已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Test-Time Adaptation Learning for Effective Hyperspectral Image Super-Resolution With Unknown Degeneration

高光谱成像 人工智能 计算机科学 模式识别(心理学) 适应(眼睛) 计算机视觉 图像(数学) 机器学习 心理学 神经科学
作者
Lei Zhang,Jiangtao Nie,Wei Wei,Yanning Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (7): 5008-5025 被引量:6
标识
DOI:10.1109/tpami.2024.3361894
摘要

Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) multi-spectral image has provided an effective way for HSI super-resolution (SR). The key lies on inferring the posteriori of the latent ( i.e. , HR) HSI using an appropriate image prior and the likelihood determined by the degeneration between the latent HSI and the observed images. However, in scenarios with complex imaging environments and various imaging scenes, the prior of HSIs can be prohibitively complicated and the degeneration is often unknown, which causes it difficult to accurately infer the posteriori of each latent HSI. To tackle this problem, we present an unsupervised test-time adaptation learning (UTAL) framework for HSI SR under unknown degeneration. Instead of directly modeling the complicated image prior, it first implicitly learns a content-agnostic prior shared across different images through supervisedly pre-training a mutual-guiding fusion module on extensive synthetic data. Then, it adapts the shared prior to those private characteristics in the latent HSI for posteriori inference through unsupervisedly learning a self-guiding adaptation module and a degeneration estimation network on two observed images in the test phase. Such a two-stage learning scheme models the complicated image prior in a divide-and-conquer manner, which eases the modeling difficulty and improves the prior accuracy. Moreover, the unknown degeneration can be estimated properly. Both of these two advantages empower us to accurately infer the posteriori of the latent HSI, thereby increasing the generalization performance in real applications. Additionally, in order to further mitigate the over-fitting in coping with more challenging cases ( e.g. , degenerations in both spectral and spatial domains are unknown) and speed up, we propose to meta-train UTAL on extensive synthetic SR tasks and solve it using an alternative optimization strategy such that UTAL learns to produce good generalization performance in real challenging cases with a small number of gradient descent steps. To verify the efficacy of UTAL, we evaluate it on HSI SR tasks with different unknown degenerations as well as some other HSI restoration tasks ( e.g. , compressive sensing), and report strong results superior to that of existing competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方沅完成签到,获得积分10
1秒前
小云飘飘发布了新的文献求助10
1秒前
可爱非笑发布了新的文献求助10
4秒前
乐乐应助整齐千柳采纳,获得10
4秒前
小云飘飘完成签到,获得积分10
6秒前
彳亍完成签到 ,获得积分10
7秒前
10秒前
12秒前
SYLH应助可爱非笑采纳,获得10
12秒前
2211发布了新的文献求助10
13秒前
16秒前
沧浪发布了新的文献求助10
17秒前
夏紊完成签到 ,获得积分10
17秒前
安琦发布了新的文献求助10
19秒前
21秒前
共享精神应助一一采纳,获得10
22秒前
科研通AI5应助Darlene采纳,获得10
22秒前
二虎完成签到,获得积分10
23秒前
24秒前
情怀应助sakiko采纳,获得10
25秒前
我是老大应助沧浪采纳,获得10
25秒前
秀丽奎完成签到 ,获得积分10
28秒前
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
George应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
30秒前
30秒前
大鱼发布了新的文献求助10
32秒前
天真的青发布了新的文献求助10
39秒前
40秒前
40秒前
华仔应助机灵眼神采纳,获得10
41秒前
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800747
求助须知:如何正确求助?哪些是违规求助? 3346292
关于积分的说明 10328703
捐赠科研通 3062711
什么是DOI,文献DOI怎么找? 1681163
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763654