石墨烯
复合材料
钻石
材料科学
维氏硬度试验
电阻率和电导率
韧性
金刚石材料性能
电导率
碳纤维
复合数
纳米技术
微观结构
化学
电气工程
物理化学
工程类
作者
Xigui Yang,Jinhao Zang,Xingju Zhao,Xiaoyan Ren,Shuailing Ma,Zhuangfei Zhang,Yuewen Zhang,Xing Li,Shaobo Cheng,Shunfang Li,Bingbing Liu,Chongxin Shan
标识
DOI:10.1073/pnas.2316580121
摘要
Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 10 4 S m −1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m 1/2 . Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp 2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI