Landslide surface horizontal displacement monitoring based on image recognition technology and computer vision

山崩 正射影像 流离失所(心理学) 地质学 变形(气象学) 变形监测 位移场 航空影像 人工智能 遥感 计算机视觉 岩土工程 计算机科学 图像(数学) 工程类 结构工程 海洋学 有限元法 心理学 心理治疗师
作者
Xin Wang,Chengzhi Pu,Wei Liu,Ke Liu
出处
期刊:Geomorphology [Elsevier BV]
卷期号:431: 108691-108691 被引量:34
标识
DOI:10.1016/j.geomorph.2023.108691
摘要

The deformation and displacement of landslides has always been the priority of landslide monitoring and early warning. With the development of image processing technology in recent years, the analysis of landslide surface deformation through image data has become a popular method and different methods of image analysis are rapidly increasing. However, the current method of analyzing landslide deformation and displacement using a single image processing method tends to analyze the displacement of the local deformation area of the landslide, which lacks overall monitoring of the slope and is difficult to use for pre-disaster monitoring of landslide hazards, easily leading to missed detection of landslide potential hazard points. Therefore, this paper combines image recognition technology and computer vision (IR-CV) to propose a method for monitoring and identifying the deformation displacement of landslide surfaces, which has been validated by indoor landslide model tests and unmanned aerial vehicle field simulation displacement recognition tests. In the model tests, the IR-CV method successfully identified the displacements generated during the deformation and damage of the landslide model while using the model deformation time series image data recorded by the camera to analyze the overall deformation of the surface of the landslide model. Further, in this paper, a field simulation displacement identification test was conducted using an unmanned aerial vehicle (UAV), and the orthophoto data obtained by the UAV verified that the IR-CV method can be used for overall deformation displacement identification of landslides in the field. The results of indoor model tests and field UAV simulation tests show that the monitoring method of IR-CV can effectively identify the deformation and displacement of landslide surfaces, which has good application prospects in pre-disaster monitoring and displacement identification of landslides, thus providing a cost-effective and feasible solution for monitoring the deformation and displacement of landslide surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
velon发布了新的文献求助10
1秒前
可靠海白完成签到,获得积分10
2秒前
Raewenning发布了新的文献求助10
2秒前
overcome完成签到,获得积分20
3秒前
郭菱香发布了新的文献求助10
3秒前
Orange应助靠谱男孩采纳,获得10
3秒前
3秒前
4秒前
斯文败类应助反方向的钟采纳,获得10
4秒前
HHM完成签到,获得积分10
4秒前
yuedinglyanke完成签到,获得积分10
4秒前
5秒前
云栖发布了新的文献求助10
5秒前
lkk发布了新的文献求助10
5秒前
5秒前
炙热芝发布了新的文献求助10
5秒前
Xdhcg发布了新的文献求助10
6秒前
7秒前
7秒前
kitty完成签到 ,获得积分10
8秒前
olekravchenko发布了新的文献求助30
8秒前
王清莹完成签到,获得积分20
8秒前
9秒前
velon完成签到,获得积分10
9秒前
10秒前
隐形发布了新的文献求助30
10秒前
九霄发布了新的文献求助10
10秒前
10秒前
haoliang发布了新的文献求助10
10秒前
bubble关注了科研通微信公众号
10秒前
hahahaha发布了新的文献求助10
10秒前
大模型应助断绝的采纳,获得10
10秒前
11秒前
荡秋千的猴子完成签到,获得积分10
11秒前
1043681559发布了新的文献求助10
11秒前
bigben446发布了新的文献求助10
12秒前
12秒前
杨阳洋发布了新的文献求助10
13秒前
所所应助Voloid采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848232
求助须知:如何正确求助?哪些是违规求助? 4148176
关于积分的说明 12847944
捐赠科研通 3895090
什么是DOI,文献DOI怎么找? 2140991
邀请新用户注册赠送积分活动 1160697
关于科研通互助平台的介绍 1060790