Novel Clinical mNGS-Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of Acinetobacter baumannii

鲍曼不动杆菌 头孢吡肟 头孢他啶 亚胺培南 环丙沙星 不动杆菌 哌拉西林 抗生素 医学 内科学 微生物学 生物 细菌 抗生素耐药性 遗传学 铜绿假单胞菌
作者
Xuejiao Hu,Yunhu Zhao,Peng Han,Suling Liu,Weijiang Liu,Cong Mai,Qianyun Deng,Jing Ren,Jiajie Luo,Fangyuan Chen,Xuefeng Jia,Jing Zhang,Guanhua Rao,Bing Gu
出处
期刊:Journal of Clinical Microbiology [American Society for Microbiology]
卷期号:61 (5) 被引量:30
标识
DOI:10.1128/jcm.01805-22
摘要

Multidrug-resistant (MDR) bacteria are important public health problems. Antibiotic susceptibility testing (AST) currently uses time-consuming culture-based procedures, which cause treatment delays and increased mortality. We developed a machine learning model using Acinetobacter baumannii as an example to explore a fast AST approach using metagenomic next-generation sequencing (mNGS) data. The key genetic characteristics associated with antimicrobial resistance (AMR) were selected through a least absolute shrinkage and selection operator (LASSO) regression model based on 1,942 A. baumannii genomes. The mNGS-AST prediction model was accordingly established, validated, and optimized using read simulation sequences of clinical isolates. Clinical specimens were collected to evaluate the performance of the model retrospectively and prospectively. We identified 20, 31, 24, and 3 AMR signatures of A. baumannii for imipenem, ceftazidime, cefepime, and ciprofloxacin, respectively. Four mNGS-AST models had a positive predictive value (PPV) greater than 0.97 for 230 retrospective samples, with negative predictive values (NPVs) of 100% (imipenem), 86.67% (ceftazidime), 86.67% (cefepime), and 90.91% (ciprofloxacin). Our method classified antibacterial phenotypes with an accuracy of 97.65% for imipenem, 96.57% for ceftazidime, 97.64% for cefepime, and 98.36% for ciprofloxacin. The average reporting time of mNGS-based AST was 19.1 h, in contrast to the 63.3 h for culture-based AST, thus yielding a significant reduction of 44.3 h. mNGS-AST prediction results coincided 100% with the phenotypic AST results when testing 50 prospective samples. The mNGS-based model could be used as a rapid genotypic AST approach to identify A. baumannii and predict resistance and susceptibility to antibacterials and could be applicable to other pathogens and facilitate rational antimicrobial usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jidou1011完成签到,获得积分10
刚刚
雪球1248发布了新的文献求助10
刚刚
养乐多完成签到,获得积分10
1秒前
完美凝海完成签到,获得积分10
1秒前
小螃蟹完成签到 ,获得积分10
1秒前
何pulapula完成签到 ,获得积分10
2秒前
可耐的问柳完成签到 ,获得积分10
2秒前
xue完成签到 ,获得积分10
3秒前
时尚的哈密瓜完成签到,获得积分10
3秒前
zdnn完成签到,获得积分10
3秒前
杨小羊完成签到,获得积分10
3秒前
天天快乐应助光暗影采纳,获得10
3秒前
Mindy完成签到 ,获得积分10
4秒前
728完成签到,获得积分10
5秒前
缘分完成签到,获得积分10
5秒前
kaka091完成签到,获得积分10
6秒前
6秒前
大姨妈完成签到,获得积分10
7秒前
王小玮发布了新的文献求助10
7秒前
MISSIW完成签到,获得积分10
9秒前
faiting完成签到,获得积分10
9秒前
芍药完成签到 ,获得积分10
10秒前
呆萌安卉完成签到 ,获得积分10
10秒前
一凯完成签到,获得积分10
10秒前
Vivid完成签到,获得积分10
10秒前
田様应助yan采纳,获得10
10秒前
Fairy完成签到 ,获得积分10
10秒前
洋子发布了新的文献求助10
11秒前
11秒前
领导范儿应助积极从蕾采纳,获得10
12秒前
芸苔AA完成签到,获得积分10
13秒前
笨笨善若完成签到,获得积分10
13秒前
挽风风风风完成签到,获得积分10
14秒前
111111完成签到,获得积分10
14秒前
雪球1248完成签到,获得积分10
15秒前
Tina应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得30
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061510
求助须知:如何正确求助?哪些是违规求助? 3600126
关于积分的说明 11432616
捐赠科研通 3323741
什么是DOI,文献DOI怎么找? 1827456
邀请新用户注册赠送积分活动 897931
科研通“疑难数据库(出版商)”最低求助积分说明 818744