Multimodal emotion recognition using cross modal audio-video fusion with attention and deep metric learning

计算机科学 判别式 杠杆(统计) 卷积神经网络 人工智能 模式 公制(单位) 可视化 多模态 语音识别 模式识别(心理学) 运营管理 社会科学 社会学 经济 万维网
作者
Bogdan Mocanu,Ruxandra Țapu,Titus Zaharia
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:133: 104676-104676 被引量:87
标识
DOI:10.1016/j.imavis.2023.104676
摘要

In the last few years, the multi-modal emotion recognition has become an important research issue in the affective computing community due to its wide range of applications that include mental disease diagnosis, human behavior understanding, human machine/robot interaction or autonomous driving systems. In this paper, we introduce a novel end-to-end multimodal emotion recognition methodology, based on audio and visual fusion designed to leverage the mutually complementary nature of features while maintaining the modality-specific information. The proposed method integrates spatial, channel and temporal attention mechanisms into a visual 3D convolutional neural network (3D-CNN) and temporal attention into an audio 2D convolutional neural network (2D-CNN) to capture the intra-modal features characteristics. Further, the inter-modal information is captured with the help of an audio-video (A-V) cross-attention fusion technique that effectively identifies salient relationships across the two modalities. Finally, by considering the semantic relations between the emotion categories, we design a novel classification loss based on an emotional metric constraint that guides the attention generation mechanisms. We demonstrate that by exploiting the relations between the emotion categories our method yields more discriminative embeddings, with more compact intra-class representations and increased inter-class separability. The experimental evaluation carried out on the RAVDESS (The Ryerson Audio-Visual Database of Emotional Speech and Song), and CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset) datasets validates the proposed methodology, which leads to average accuracy scores of 89.25% and 84.57%, respectively. In addition, when compared to state-of-the-art techniques, the proposed solution shows superior performances, with gains in accuracy ranging in the [1.72%, 11.25%] interval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liao应助zhang591025采纳,获得10
刚刚
贝肯妮发布了新的文献求助10
刚刚
4秒前
4秒前
Ava应助加菲丰丰采纳,获得10
6秒前
Ava应助123采纳,获得10
6秒前
JIE完成签到,获得积分10
8秒前
9秒前
haizz发布了新的文献求助10
9秒前
9秒前
科研通AI6应助yaoli0823采纳,获得10
10秒前
科研通AI6应助高挑的乐珍采纳,获得10
10秒前
11秒前
华仔应助Lismart采纳,获得10
13秒前
334niubi666完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助昏睡的傲珊采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
小皮发布了新的文献求助10
16秒前
yly发布了新的文献求助10
16秒前
16秒前
Ryuki完成签到 ,获得积分10
17秒前
共享精神应助ysy采纳,获得10
19秒前
万能图书馆应助勤奋幻柏采纳,获得10
19秒前
21秒前
春眠不觉小小酥完成签到,获得积分10
21秒前
21秒前
21秒前
123发布了新的文献求助10
23秒前
wenlongliu完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
王剑关注了科研通微信公众号
25秒前
Lucas应助shwang采纳,获得10
26秒前
26秒前
27秒前
淡然宛凝完成签到 ,获得积分10
27秒前
27秒前
爆爆完成签到,获得积分20
27秒前
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701