Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
刚刚
taohehe发布了新的文献求助10
刚刚
刚刚
慕慕倾完成签到 ,获得积分10
2秒前
huhuodan发布了新的文献求助10
2秒前
3秒前
依依发布了新的文献求助10
4秒前
5秒前
longwu完成签到,获得积分10
5秒前
善学以致用应助刘明坤采纳,获得10
5秒前
6秒前
搜集达人应助1723278678采纳,获得10
6秒前
666完成签到 ,获得积分10
7秒前
H丶化羽发布了新的文献求助10
7秒前
动漫大师发布了新的文献求助10
7秒前
huhuodan完成签到,获得积分10
8秒前
8秒前
Wai完成签到 ,获得积分10
10秒前
文艺访风发布了新的文献求助20
10秒前
香蕉觅云应助heiztcasino采纳,获得10
11秒前
11秒前
taohehe完成签到,获得积分10
12秒前
搜集达人应助mia采纳,获得200
13秒前
长江完成签到 ,获得积分10
13秒前
cdercder应助小路采纳,获得10
13秒前
13秒前
15秒前
文艺的竺完成签到,获得积分10
15秒前
你好好好发布了新的文献求助10
15秒前
16秒前
畅快枕头完成签到,获得积分10
18秒前
cdercder应助lll采纳,获得10
18秒前
开心的又夏完成签到,获得积分10
18秒前
骆欣怡完成签到 ,获得积分10
18秒前
冯洋洋发布了新的文献求助10
19秒前
章鱼哥想毕业完成签到,获得积分10
19秒前
在水一方应助你好好好采纳,获得10
20秒前
搜集达人应助进击的张张采纳,获得10
21秒前
22秒前
依克完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783797
求助须知:如何正确求助?哪些是违规求助? 3329060
关于积分的说明 10239593
捐赠科研通 3044467
什么是DOI,文献DOI怎么找? 1671031
邀请新用户注册赠送积分活动 800057
科研通“疑难数据库(出版商)”最低求助积分说明 759179