A hierarchical attention network integrating multi-scale relationship for drug response prediction

计算机科学 比例(比率) 人工智能 机器学习 数据挖掘 地图学 地理
作者
Xiaoqi Wang,Yuqi Wen,Yixin Zhang,Chong Dai,Yaning Yang,Xiaochen Bo,Song He,Shaoliang Peng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:110: 102485-102485 被引量:2
标识
DOI:10.1016/j.inffus.2024.102485
摘要

Anticancer drug response prediction with deep learning technology has become the foundation of precision medicine. It is essential for anticancer drug response prediction to incorporate multi-scale relationships within feature items and biomedical entities. Therefore, we propose MultiDRP that develops the hierarchical attention networks integrating multi-scale relationship for drug response prediction. MultiDRP can fuse both internal correlation of feature items and external relationship of biomedical entities by hierarchically integrating graph attention and self-attention networks to improve the anticancer drug response prediction. A variety of results showed that MultiDRP generated the great representation by integrating multi-scale relationships, and achieved higher performance compared to existing methods on various prediction scenarios. The results of network proximity, gene ontology biological process (GOBP) enrichment, and drug pathway association analysis show that MultiDRP can accurately screen the sensitive and resistant drugs for cancer cell lines. In vitro experiments, eight novel drugs predicted by MultiDRP exhibited high sensitivity to lung cancer cell line NCI-H23, seven of which showed IC50 values of less than 10nM. These results further suggest that MultiDRP can serve as a powerful tool for anticancer drug response prediction. The source data and code are available at https://github.com/pengsl-lab/MultiDRP.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yilin完成签到,获得积分10
刚刚
顺利毕业发布了新的文献求助10
刚刚
1秒前
阿七完成签到,获得积分10
1秒前
1秒前
田様应助foceman采纳,获得10
1秒前
xl发布了新的文献求助10
1秒前
隐形盼海发布了新的文献求助20
2秒前
2秒前
科研通AI5应助Peri采纳,获得10
2秒前
大模型应助fd163c采纳,获得30
2秒前
WLM发布了新的文献求助10
3秒前
lalal完成签到,获得积分10
3秒前
搜集达人应助芝士肉肉丸采纳,获得10
3秒前
3秒前
韶冥茗发布了新的文献求助10
4秒前
wwv完成签到,获得积分20
4秒前
4秒前
aliu完成签到,获得积分10
4秒前
SciGPT应助Dfish采纳,获得10
4秒前
泡泡球完成签到,获得积分10
5秒前
64658完成签到,获得积分10
5秒前
拳击帅哥完成签到,获得积分10
6秒前
6秒前
科研通AI5应助infboy采纳,获得10
6秒前
7秒前
香蕉觅云应助mcv采纳,获得10
7秒前
wwv发布了新的文献求助10
8秒前
香蕉觅云应助杨旸采纳,获得10
8秒前
8秒前
hrrypeet完成签到,获得积分10
8秒前
友好傲白完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
xl完成签到,获得积分10
9秒前
研友_8QxN1Z发布了新的文献求助10
11秒前
孤独的沛槐完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837924
求助须知:如何正确求助?哪些是违规求助? 3380044
关于积分的说明 10512173
捐赠科研通 3099680
什么是DOI,文献DOI怎么找? 1707179
邀请新用户注册赠送积分活动 821498
科研通“疑难数据库(出版商)”最低求助积分说明 772667