Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating

聚电解质 涂层 盐度 化学工程 材料科学 纳米技术 化学 聚合物 复合材料 生态学 生物 工程类
作者
Nader Nekoubin,Arman Sadeghi,Suman Chakraborty
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c00477
摘要

The inherent limits of the current produced by imposing salinity gradients along a nanofluidic channel having "hard" boundary walls heavily constrain the resulting energy harvesting efficacy, acting as major hindrances against the practicability of harnessing high power density from the mixing of water having different salinities. In this work, the infusion of variable-thickness polyelectrolyte layer of a conical shape is projected to augment salinity gradient power generation in nanochannels. Such a progressive thickening of a charged interfacial layer on account of axially declining ion concentration facilitates the shedding of enhanced numbers of mobile ions, bearing a net charge of equal and opposite to the surface-bound ions, into the mainstream current flow. We show that the proposed design can convert energy at a higher efficiency as compared to both solid-state and available polyelectrolyte layer (PEL)-covered nanochannels. The same is true for the maximum power density at moderate and high concentration ratios including natural salt gradient conditions for which more than 50% increase is achievable. The maximum values achieved for efficiency and power density read 50.3% and 6.6 kW/m2, respectively. Our results provide fundamental insights on strategizing variable-thickness polyelectrolyte layer grafting on the nanochannel interfaces, toward realizing high-performance osmotic power generators by altering the local ionic clouds alongside the grafted layers and enhancing the ionic mobility by inducing a driving potential gradient concomitantly. These findings open up a new strategy of efficient conversion of the power of the salinity difference of seawater and river water into electricity in a nanofluidic framework, surpassing the previously established limits of blue energy harvesting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wzd给wzd的求助进行了留言
1秒前
夙与发布了新的文献求助10
1秒前
5秒前
隐形曼青应助月亮采纳,获得10
6秒前
yuzuru完成签到,获得积分10
7秒前
szy完成签到,获得积分10
7秒前
科研通AI2S应助封不迟采纳,获得10
9秒前
10秒前
10秒前
lyzhou发布了新的文献求助10
10秒前
12秒前
雪白的面包完成签到 ,获得积分10
12秒前
14秒前
简简单单发布了新的文献求助10
15秒前
16秒前
17秒前
我是老大应助梨子采纳,获得10
17秒前
月亮发布了新的文献求助10
18秒前
清嘉完成签到,获得积分10
19秒前
朴素元珊发布了新的文献求助30
22秒前
采鹿鸣完成签到,获得积分10
23秒前
xiemou完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
学习快乐应助王子采纳,获得10
27秒前
28秒前
可可发布了新的文献求助10
29秒前
祖小凝发布了新的文献求助10
30秒前
tinydog完成签到,获得积分10
30秒前
wzd发布了新的文献求助10
32秒前
33秒前
无限的板栗完成签到 ,获得积分10
33秒前
夙与完成签到,获得积分10
35秒前
terence发布了新的文献求助10
37秒前
Giao完成签到,获得积分10
37秒前
桐桐应助lili采纳,获得10
37秒前
祖小凝完成签到,获得积分10
39秒前
朴素元珊完成签到,获得积分10
39秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Love and Friendship in the Western Tradition: From Plato to Postmodernity 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2548783
求助须知:如何正确求助?哪些是违规求助? 2176691
关于积分的说明 5605753
捐赠科研通 1897461
什么是DOI,文献DOI怎么找? 946990
版权声明 565447
科研通“疑难数据库(出版商)”最低求助积分说明 503985