Photocatalytic Hydrogen Evolution with Conjugated Polymers: Structure–Property Insights and Design Strategies

材料科学 光催化 共轭体系 聚合物 财产(哲学) 纳米技术 化学工程 有机化学 催化作用 复合材料 认识论 工程类 哲学 化学
作者
Wooteak Jung,Jinhyuk Choi,Sanghyeok An,Siwon Yun,Dae Sung Chung,Hyojung Cha,Jongchul Lim,Taiho Park
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:15 (39) 被引量:4
标识
DOI:10.1002/aenm.202501600
摘要

Abstract Semiconducting polymer‐based photocatalysts have emerged as a promising platform for solar‐driven hydrogen production, offering tunable optoelectronic properties and synthetic versatility. This review systematically categorizes these materials into single‐component, multicomponent, and hybrid systems that integrate synthetic and biological components, each with distinct structural and mechanistic considerations. In single‐component systems, the influence of molecular polarity, backbone modifications, and charge transport pathways on exciton dynamics and catalytic performance is focused. In contrast, multicomponent systems exploit the complex interplay between the donor and acceptor materials, where morphology control, interfacial tuning, and intermolecular interactions collectively govern charge transport, recombination suppression, and catalytic activity. Hybrid systems extend these concepts by integrating semiconducting polymers with biological components and combining polymeric light‐harvesting capabilities with biocatalytic precision. By establishing clear structure–property relationships across these categories, the current design constraints and performance bottlenecks in polymer‐based hydrogen catalysts are critically assessed. Furthermore, not only material design strategies but also the role of advanced optical analysis, morphology characterization, and computational calculations (including machine learning‐guided materials discovery) in accelerating the rational design of next‐generation photocatalysts are discussed. This review provides a comprehensive roadmap for the development of high‐performance polymeric systems for sustainable hydrogen production, bridging fundamental molecular design principles with practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助鲸鱼采纳,获得10
1秒前
李晨发布了新的文献求助10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
lbx发布了新的文献求助10
4秒前
科研通AI6应助001采纳,获得10
5秒前
5秒前
5秒前
5秒前
斯文的从彤完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Zoe完成签到,获得积分10
8秒前
8秒前
zhang完成签到 ,获得积分10
9秒前
ding发布了新的文献求助10
9秒前
9秒前
111发布了新的文献求助10
9秒前
10秒前
灰色的乌完成签到,获得积分10
10秒前
10秒前
CodeCraft应助泡泡老爷车采纳,获得10
10秒前
zhengjinwu发布了新的文献求助10
11秒前
可靠飞飞发布了新的文献求助10
11秒前
11秒前
生煎包大侠完成签到 ,获得积分10
11秒前
懵懂的乾发布了新的文献求助10
11秒前
猫尔儿发布了新的文献求助10
12秒前
年鱼精发布了新的文献求助10
13秒前
共享精神应助栗子采纳,获得10
13秒前
思川完成签到,获得积分10
14秒前
14秒前
14秒前
CipherSage应助小火孩采纳,获得10
16秒前
潇洒南晴关注了科研通微信公众号
16秒前
隐形曼青应助刚刚一会儿采纳,获得10
16秒前
栗子发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526