Evaluating the Performance of State-of-the-Art Artificial Intelligence Chatbots Based on the WHO Global Guidelines for the Prevention of Surgical Site Infection: Cross-Sectional Study

指南 多学科方法 利克特量表 医疗保健 等级间信度 干预(咨询) 心理学 医学 人工智能 家庭医学 计算机科学 护理部 政治学 病理 评定量表 法学 发展心理学
作者
Tianyi Wang,Ruiyuan Chen,B.C.M. Wang,Congying Zou,Ning Fan,Shuo Yuan,Aobo Wang,Yu Xi,Lei Zang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e75567-e75567 被引量:3
标识
DOI:10.2196/75567
摘要

Abstract Background Surgical site infection (SSI) is the most prevalent type of health care–associated infection that leads to increased morbidity and mortality and a significant economic burden. Effective prevention of SSI relies on surgeons strictly following the latest clinical guidelines and implementing standardized and multilevel intervention strategies. However, the frequent updates to clinical guidelines render the processes of acquisition and interpretation quite time-consuming and intricate. The emergence of artificial intelligence (AI) chatbots offers both possibilities and challenges to address these issues in the surgical field. Objective This study aimed to test the multidimensional capability of state-of-the-art AI chatbots for generating proper recommendations and corresponding rationales concordant with the global guideline for the prevention of SSI. Methods Referred by other authoritative guidelines, recommendations and corresponding rationales from the 2018 World Health Organization global guidelines were refined and selected as benchmarks. Then, they were rephrased into a combined format of closed-ended queries for recommendations and open-ended queries for corresponding rationales, whereafter input into ChatGPT-4o (OpenAI), OpenAI-o1 (OpenAI), Claude 3.5 Sonnet (Anthropic), and Gemini 1.5 Pro (Google) 3 times. All responses were individually evaluated in 10 evaluation metrics based on the QUEST dimensions by 4 multidisciplinary senior surgeons using a 5-point Likert scale. The multidimensional performances among chatbots were compared, and the interrater agreements were calculated. Results A total of 300 responses to 25 queries were generated by the 4 chatbots. The interrater agreements of the evaluators ranged from moderate to good (0.54‐0.87). In response to recommendations, the average accuracy, consistency, and harm scores for all chatbots were 4.03 (SD 1.09), 4.07 (SD 0.88), and 4.29 (SD 1.01), respectively. In responses for rationales, 4 subdimensions, including harm (mean 4.22, SD 0.97), relevance (mean 4.15, SD 0.83), fabrication and falsification (mean 4.12, SD 1.02), and understanding and reasoning (mean 4.04, SD 0.92) averagely scored ≥4. In contrast, consistency (mean 3.94, SD 0.72), clarity (mean 3.94, SD 0.89), comprehensiveness (mean 3.85, SD 0.83), and accuracy (mean 3.74, SD 0.91) performed at a moderate level. For the whole responses, the average self-awareness and trust and confidence scores for all chatbots were 3.84 (SD 0.89) and 3.88 (SD 0.91), respectively. Based on the average scores of the subdimensions, Claude 3.5 Sonnet and ChatGPT-4o were the top 2 outperformed models. Conclusions The performance of AI chatbots in providing responses regarding well-established global guidelines in the prevention of SSI was acceptable, demonstrating immense potential in clinical applications. Nonetheless, a critical issue is the necessity of enhancing the stability of chatbots, as inaccurate responses can lead to severe consequences for SSI. Despite its limitations, it is anticipated that AI will trigger far-reaching changes in how clinicians access and use medical information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
文艺水风完成签到 ,获得积分10
5秒前
胖胖橘完成签到 ,获得积分10
7秒前
刻苦的新烟完成签到 ,获得积分0
8秒前
cwanglh完成签到 ,获得积分10
8秒前
范ER完成签到 ,获得积分10
9秒前
athena完成签到 ,获得积分10
23秒前
麦田麦兜完成签到,获得积分10
27秒前
tbdxby完成签到 ,获得积分0
28秒前
海阔天空完成签到 ,获得积分10
34秒前
LINDENG2004完成签到 ,获得积分10
38秒前
qzh006完成签到,获得积分10
38秒前
灵巧的以亦完成签到 ,获得积分10
41秒前
kanong完成签到,获得积分0
42秒前
高贵的问萍完成签到,获得积分10
44秒前
hml123完成签到,获得积分10
46秒前
su完成签到 ,获得积分0
46秒前
Kelsey完成签到 ,获得积分10
50秒前
鹏虫虫发布了新的文献求助10
53秒前
carl完成签到 ,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
166完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
林好人完成签到 ,获得积分10
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
Michael完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
斯文的傲珊完成签到,获得积分10
1分钟前
李木禾完成签到 ,获得积分10
1分钟前
kuyi完成签到 ,获得积分0
1分钟前
Improve完成签到,获得积分0
1分钟前
binghe完成签到,获得积分10
1分钟前
整齐的飞兰完成签到 ,获得积分10
1分钟前
yx完成签到 ,获得积分10
2分钟前
CY完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595774
关于积分的说明 14449708
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550