Machine learning improves post-transplantation HCC recurrence prediction

肝细胞癌 医学 肝移植 移植 内科学 肿瘤科
作者
P. Jonathan Li,Amir Ashraf‐Ganjouei,Shareef Syed,Neil Mehta,Adnan Alseidi,Mohamed A. Adam
出处
期刊:Liver Transplantation [Wiley]
卷期号:31 (11): 1349-1358
标识
DOI:10.1097/lvt.0000000000000685
摘要

We aimed to enhance post-transplantation HCC recurrence prediction by evaluating additional novel risk factors and leveraging state-of-the-art machine learning (ML) algorithms. Using the United Network for Organ Sharing (UNOS) database, we identified adult HCC patients who underwent liver transplantation (LT) 2015–2018 and considered >50 available clinical, radiographic, laboratory/biomarker, and explant pathology variables to predict post-transplantation recurrence-free survival. The cohort was split 70:30 into training and test datasets. Recursive feature elimination was employed to select an optimal number of variables for each candidate ML model. Final model performance was compared to clinically used tools with the test dataset. Of the 3106 patients identified, 7.2% developed post-transplantation HCC recurrence. The Gradient Boosting Survival algorithm performed best (C-index 0.73) and included 7 variables: explant tumor burden score (TBS), alpha fetoprotein (AFP) at transplantation, maximum pre-transplantation TBS, pre-transplantation AFP slope, microvascular invasion on explant, poor tumor differentiation on explant, and change in pre-transplantation TBS normalized by the number of locoregional therapies received. This outperformed the Risk Estimation of Tumor REcurrence After Transplant (RETREAT) Score (C-Index 0.70). A Random Survival Forest model including only preoperative variables [AFP at transplantation, pre-transplantation AFP slope, change in AFP from listing to transplantation, maximum pre-transplantation TBS, and Albumin–Bilirubin (ALBI) Grade change from listing to transplantation] was also able to predict post-LT HCC recurrence (C-Index 0.69). In summary, we developed a novel ML model that outperforms a widely used post-transplantation HCC recurrence risk score. This model may be used to better risk-stratify patients following transplantation and tailor surveillance/adjuvant therapy. The pre-transplantation ML model may be used with the Milan Criteria to further risk-stratify patients being considered for transplantation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真听安完成签到,获得积分20
刚刚
刚刚
刚刚
zxy929600959完成签到,获得积分10
1秒前
aaa完成签到 ,获得积分10
1秒前
2秒前
rudjs发布了新的文献求助30
3秒前
文俊伟完成签到,获得积分10
3秒前
Sophie完成签到,获得积分10
3秒前
牛西潼完成签到,获得积分10
3秒前
务实豁完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
坚定思天完成签到,获得积分10
4秒前
要减肥白云完成签到,获得积分20
4秒前
深情隶完成签到,获得积分10
4秒前
打打应助gyq采纳,获得10
4秒前
kingwill发布了新的文献求助30
4秒前
xiao完成签到 ,获得积分10
5秒前
5秒前
忙碌的数学人完成签到,获得积分10
5秒前
直率的惜寒完成签到,获得积分10
5秒前
5秒前
圆锥香蕉完成签到,获得积分0
5秒前
6秒前
6秒前
小二郎应助专注的妍采纳,获得80
6秒前
wy18567337203发布了新的文献求助10
7秒前
7秒前
白马爱毛驴完成签到,获得积分10
7秒前
8秒前
汉堡包应助YAOYAO采纳,获得10
8秒前
8秒前
8秒前
粥粥完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427734
求助须知:如何正确求助?哪些是违规求助? 4541470
关于积分的说明 14177378
捐赠科研通 4459139
什么是DOI,文献DOI怎么找? 2445250
邀请新用户注册赠送积分活动 1436438
关于科研通互助平台的介绍 1413797