Mode decomposition of pressure effects on coherent structures in self-excited oscillating cavitation waterjets

物理 空化 模式(计算机接口) 机械 动态模态分解 激发态 分解 经典力学 声学 原子物理学 生态学 计算机科学 生物 操作系统
作者
Wenjiang Hou,Shidong Fan,Xiuneng Li,Yan Chen,Xiaofeng Guo,Zhenlong Fang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (10)
标识
DOI:10.1063/5.0294440
摘要

Self-excited oscillating cavitation waterjets are widely utilized in marine engineering applications such as deep-sea mining, well drilling, and natural gas hydrate extraction. The operating pressure critically influences their frequency response and oscillation characteristics, thereby impacting operational efficiency. This study investigates the effect of pressure on the vortex and cavitation cloud structures. Large eddy simulation was employed to simulate the cavitation flow within waterjets. The generalized S-transform method was utilized to analyze the difference in pressure oscillation frequency between the interior and exterior of the oscillator. Dynamic mode decomposition further elucidated the coupling characteristics of vortex structures in the flow field. The energy transfer coefficient was used to quantitatively characterize the energy exchange between coherent vortex structures and cavitation clouds. The main findings are that large-scale bubbles enhance vortex shedding and promote the collapse of coherent structures. Near the Helmholtz nozzle outlet, vortex structures exhibit relative compactness, and the waterjets demonstrate strong coherence. Prior to modulation, the time–frequency spectrum reveals a dominant peak at 105 Hz. Post-modulation, transient pressure fluctuations are predominantly concentrated in the low-frequency range, with a dominant frequency of 200 Hz. Cavitation bubble expansion is identified as the primary factor driving the stretching of coherent structures. Furthermore, the shedding of vortex rings at the waterjet's fundamental frequency is synchronized with its entire cycle of cavitation bubble expansion and collapse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz小秦完成签到 ,获得积分10
刚刚
1秒前
所所应助原来采纳,获得10
1秒前
2秒前
3秒前
lucky完成签到,获得积分10
3秒前
研友_VZG7GZ应助An采纳,获得10
3秒前
wrahb完成签到,获得积分10
4秒前
li完成签到,获得积分10
4秒前
4秒前
nice发布了新的文献求助10
5秒前
无花果应助11111采纳,获得10
6秒前
li发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小青菜完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
悄悄的发布了新的文献求助10
8秒前
8秒前
8秒前
lucky发布了新的文献求助10
10秒前
ding应助childe采纳,获得10
11秒前
11秒前
医隐发布了新的文献求助60
12秒前
13秒前
原来发布了新的文献求助10
14秒前
小龚小龚完成签到 ,获得积分10
14秒前
An发布了新的文献求助10
15秒前
善学以致用应助赵赵采纳,获得10
16秒前
16秒前
无情妙菡发布了新的文献求助20
19秒前
科研通AI6.1应助jiang采纳,获得10
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
24秒前
24秒前
浮生之梦发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736345
求助须知:如何正确求助?哪些是违规求助? 5365448
关于积分的说明 15332933
捐赠科研通 4880224
什么是DOI,文献DOI怎么找? 2622747
邀请新用户注册赠送积分活动 1571635
关于科研通互助平台的介绍 1528489