破骨细胞
骨吸收
骨重建
骨髓
外周血单个核细胞
骨矿物
内分泌学
内科学
医学
吸收
骨质疏松症
癌症研究
化学
体外
受体
生物化学
作者
Hao Luo,Sijian Lin,Jiachao Xiong,Wen Tan,Hao Lv,Zhiming Liu,Qin Wu,Junlong Zhong,Kai Cao
摘要
Abstract Adolescent idiopathic scoliosis (AIS) is characterized by decreased bone mineral density (BMD), which is associated with an increased risk of skeletal fragility and poor long-term outcomes. This study explores the role of the CARD14 gene in osteoclast differentiation and its contribution to bone metabolism dysregulation in AIS patients. RNA sequencing of peripheral blood mononuclear cells (PBMCs) from AIS patients identified significantly elevated CARD14 expression compared to controls. Functional in vitro assays demonstrated enhanced osteoclastogenesis in PBMC-derived cells from AIS patients, as evidenced by an increase in TRAP-positive multinucleated cells and resorption pit formation. To further elucidate CARD14’s role, adenoviral vectors were constructed to overexpress CARD14 in bone marrow-derived macrophages (BMMs) from C57/B6 mice, leading to markedly increased osteoclast differentiation and activity. Next, we utilized bone marrow-specific Card14 knockout mice to investigate the in vivo role of CARD14. These mice exhibited reduced osteoclast activity, improved trabecular bone microarchitecture, and increased BMD, as evidenced by micro-CT and histological analyses. Additionally, serum biomarkers of bone metabolism further corroborated these findings. Mechanistically, CARD14 was found to interact with MYC and regulate osteoclast differentiation through a MYC-dependent pathway, while simultaneously activating NF-κB and MAPK signaling, which are critical for osteoclastogenesis. AIS patients consistently showed lower BMD and higher osteoclast counts than age-matched controls, establishing a link between abnormal osteoclast function and bone loss in AIS. The results highlight that elevated CARD14 expression promotes osteoclastogenesis and bone resorption, contributing to reduced BMD in AIS. Targeting CARD14 and its associated signaling pathways may represent a novel therapeutic approach to address bone density loss in AIS patients, potentially improving their skeletal health and quality of life.
科研通智能强力驱动
Strongly Powered by AbleSci AI