De novo protein design by inversion of the AlphaFold structure prediction network

蛋白质设计 计算生物学 蛋白质结构 反演(地质) 生物 计算机科学 化学 生物化学 构造盆地 古生物学
作者
Casper A. Goverde,Benedict Wolf,Hamed Khakzad,Stéphane Rosset,Bruno E. Correia
出处
期刊:Protein Science [Wiley]
卷期号:32 (6) 被引量:47
标识
DOI:10.1002/pro.4653
摘要

De novo protein design enhances our understanding of the principles that govern protein folding and interactions, and has the potential to revolutionize biotechnology through the engineering of novel protein functionalities. Despite recent progress in computational design strategies, de novo design of protein structures remains challenging, given the vast size of the sequence-structure space. AlphaFold2 (AF2), a state-of-the-art neural network architecture, achieved remarkable accuracy in predicting protein structures from amino acid sequences. This raises the question whether AF2 has learned the principles of protein folding sufficiently for de novo design. Here, we sought to answer this question by inverting the AF2 network, using the prediction weight set and a loss function to bias the generated sequences to adopt a target fold. Initial design trials resulted in de novo designs with an overrepresentation of hydrophobic residues on the protein surface compared to their natural protein family, requiring additional surface optimization. In silico validation of the designs showed protein structures with the correct fold, a hydrophilic surface and a densely packed hydrophobic core. In vitro validation showed that 7 out of 39 designs were folded and stable in solution with high melting temperatures. In summary, our design workflow solely based on AF2 does not seem to fully capture basic principles of de novo protein design, as observed in the protein surface's hydrophobic vs. hydrophilic patterning. However, with minimal post-design intervention, these pipelines generated viable sequences as assessed experimental characterization. Thus, such pipelines show the potential to contribute to solving outstanding challenges in de novo protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴吐司发布了新的文献求助10
刚刚
刚刚
刚刚
橙子味汽水完成签到,获得积分10
2秒前
852应助荷呵呵采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
Nn1发布了新的文献求助10
7秒前
XX完成签到,获得积分10
7秒前
共享精神应助友好的如霜采纳,获得10
8秒前
小田发布了新的文献求助10
9秒前
10秒前
10秒前
金秋发布了新的文献求助10
10秒前
11秒前
柒柒完成签到 ,获得积分20
11秒前
11秒前
12秒前
XXHH发布了新的文献求助10
12秒前
鸣笛应助duduguai采纳,获得10
14秒前
科研通AI6应助自觉静竹采纳,获得10
15秒前
所所应助椰子采纳,获得30
15秒前
17秒前
慕青应助小海狸采纳,获得10
17秒前
17秒前
17秒前
18秒前
科研通AI6应助agou采纳,获得10
19秒前
山语发布了新的文献求助10
20秒前
郑大甜发布了新的文献求助10
21秒前
22秒前
24秒前
25秒前
25秒前
26秒前
皮蛋完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4510949
求助须知:如何正确求助?哪些是违规求助? 3956880
关于积分的说明 12266904
捐赠科研通 3617830
什么是DOI,文献DOI怎么找? 1990727
邀请新用户注册赠送积分活动 1027084
科研通“疑难数据库(出版商)”最低求助积分说明 918398