Interpretable multimodal radiopathomics model predicting pathological complete response to neoadjuvant chemoimmunotherapy in esophageal squamous cell carcinoma

作者
Baojia Qi,Zhaoyu Jiang,Haixia Shen,Jiacheng Li,Zhixiang Wang,Min Fang,Changchun Wang,Youhua Jiang,Jingping Yuan,Inigo Bermejo,Andre Dekker,Dirk De Ruysscher,Leonard Wee,Wencheng Zhang,Yongling Ji,Zhen Zhang
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:13 (12): e013840-e013840
标识
DOI:10.1136/jitc-2025-013840
摘要

Background Accurate preoperative prediction of pathological complete response (pCR) following neoadjuvant chemoimmunotherapy (nCIT) could help individualize treatment for patients with esophageal squamous cell carcinoma (ESCC). This study aimed to develop and externally validate an interpretable multimodal machine learning framework that integrates CT radiomics and H&E-stained whole-slide images pathomics to predict pCR. Methods In this multicenter, retrospective study, 335 patients with ESCC who received nCIT followed by esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (181 patients) and an internal test set (115 patients), while data from the other two centers comprised an external test set (39 patients). We developed unimodal radiomics and pathomics models, and two multimodal fusion models—an intermediate fusion model (MIFM) and a late fusion model (MLFM). Model performance was evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score, with exploratory survival stratification by observed and model-predicted pCR status. Interpretability was treated as a design constraint and operationalized at both the feature and model levels. Results The MIFM outperformed unimodal models and the MLFM across all cohorts, achieving AUC/accuracy/sensitivity/specificity/F1 score of 0.97/0.93/0.84/0.96/0.86 (training set), 0.78/0.87/0.62/0.93/0.63 (internal test set), and 0.76/0.77/0.54/0.88/0.61 (external test set). Both observed and predicted pCR status showed exploratory prognostic stratification for overall survival. Feature definitions were mathematically or morphologically explicit, and case-level/cohort-level explanations together with decision-pathway views provided insights into model reasoning. We additionally provide a user-friendly Graphical User Interface to facilitate clinical practice. Conclusions We developed and externally validated an interpretable radiopathomics fusion framework that predicts pCR after nCIT in ESCC using standard-of-care data. This model holds promise as an effective tool for guiding individualized decisions between surveillance and timely surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
1秒前
8秒前
从容的水壶完成签到 ,获得积分10
8秒前
武雨寒完成签到,获得积分20
9秒前
搜集达人应助橙子采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
武雨寒发布了新的文献求助10
12秒前
黄启烽完成签到,获得积分10
17秒前
kelien1205完成签到 ,获得积分10
18秒前
24秒前
ZH完成签到,获得积分10
25秒前
27秒前
斯文败类应助小海采纳,获得10
33秒前
Skyllne完成签到 ,获得积分10
37秒前
笨笨听枫完成签到 ,获得积分10
39秒前
背书强完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
45秒前
qianci2009完成签到,获得积分0
45秒前
fanglihua完成签到 ,获得积分10
47秒前
xue完成签到 ,获得积分10
48秒前
舒服的井完成签到,获得积分10
51秒前
忧伤的慕梅完成签到 ,获得积分10
51秒前
多边形完成签到 ,获得积分10
52秒前
WSY完成签到 ,获得积分10
52秒前
小海发布了新的文献求助10
53秒前
凶狠的白桃完成签到 ,获得积分10
58秒前
独孤家驹完成签到 ,获得积分10
1分钟前
一只橘子完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
Regina完成签到 ,获得积分10
1分钟前
lyy完成签到 ,获得积分10
1分钟前
水上汀州完成签到 ,获得积分10
1分钟前
喜悦向秋完成签到 ,获得积分10
1分钟前
大侠完成签到 ,获得积分10
1分钟前
几几完成签到,获得积分10
1分钟前
kbkyvuy完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510094
求助须知:如何正确求助?哪些是违规求助? 4604736
关于积分的说明 14490087
捐赠科研通 4539748
什么是DOI,文献DOI怎么找? 2487675
邀请新用户注册赠送积分活动 1469955
关于科研通互助平台的介绍 1442415