A Bayesian approach for simultaneous spike/LFP separation and spike sorting

尖峰分选 Spike(软件开发) 计算机科学 模式识别(心理学) 聚类分析 人工智能 分类 波形 局部场电位 信号(编程语言) 水准点(测量) 贝叶斯概率 算法 神经科学 大地测量学 雷达 地理 程序设计语言 电信 软件工程 生物
作者
Steven Le Cam,Pauline Jurczynski,Jacques Jonas,Laurent Koessler,Sophie Colnat‐Coulbois,Radu Ranta
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (2): 026027-026027 被引量:11
标识
DOI:10.1088/1741-2552/acc210
摘要

Abstract Objective. The aim of this paper is to present a novel method for simultaneous spike waveforms extraction and sorting from the raw recorded signal. The objective is twofold: on the one hand, to enhance spike sorting performance by extracting the spike waveforms of each spike and, on the other hand, to improve the analysis of the multi-scale relationships between spikes and local field potentials (LFP) by offering an accurate separation of these two components constitutive of the raw micro recordings. Approach. The method, based on a Bayesian approach, is fully automated and provides a mean spike shape for each cluster, but also an estimate for each singular spike waveform, as well as the LFP signal cleaned of spiking activity. Main results. The performance of the algorithm is evaluated on simulated and real data, for which both the clustering and spike removal aspects are analyzed. Clustering performance significantly increases when compared to state-of-the-art methods, taking benefit from the separation of the spikes from the LFP handled by our model. Our method also performs better in removing the spikes from the LFP when compared to previously proposed methodologies, especially in the high frequency bands. The method is finally applied on real data (ClinicalTrials.gov Identifier: NCT02877576) and confirm the results obtained on benchmark signals. Significance. By separating more efficiently the spikes from the LFP background, our method allows both a better spike sorting and a more accurate estimate of the LFP, facilitating further analysis such as spike-LFP relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
刚刚
咕噜咕噜完成签到,获得积分20
1秒前
3秒前
Lee发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
5秒前
vicin完成签到,获得积分10
5秒前
wang完成签到,获得积分10
6秒前
6秒前
yyy完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
8秒前
苏酒发布了新的文献求助10
10秒前
10秒前
魔幻可乐完成签到,获得积分10
11秒前
11秒前
12秒前
淮竹发布了新的文献求助10
12秒前
qq发布了新的文献求助10
13秒前
13秒前
Sway发布了新的文献求助10
13秒前
13秒前
达落完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
欢呼的荆发布了新的文献求助10
18秒前
19秒前
After应助花椒小透明采纳,获得20
19秒前
一一发布了新的文献求助10
19秒前
20秒前
科研通AI6.1应助钟梓袄采纳,获得10
20秒前
科研通AI6.1应助钟梓袄采纳,获得10
20秒前
酷波er应助钟梓袄采纳,获得10
20秒前
toutou应助钟梓袄采纳,获得10
21秒前
wanci应助钟梓袄采纳,获得10
21秒前
21秒前
朴素的士晋完成签到 ,获得积分10
21秒前
乌力吉发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777921
求助须知:如何正确求助?哪些是违规求助? 5636658
关于积分的说明 15447224
捐赠科研通 4909858
什么是DOI,文献DOI怎么找? 2641972
邀请新用户注册赠送积分活动 1589855
关于科研通互助平台的介绍 1544362