Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting

连接词(语言学) 参数统计 非参数统计 边际分布 联合概率分布 计量经济学 多元统计 数学 统计 计算机科学 随机变量
作者
Shahid Latif,Slobodan P. Simonović
出处
期刊:Water Resources Management [Springer Science+Business Media]
卷期号:37 (4): 1641-1693 被引量:2
标识
DOI:10.1007/s11269-023-03448-6
摘要

Severe flooding in coastal areas can result from the joint probability of oceanographic, hydrological, and meteorological factors, resulting in compound flooding (CF) events. Recently, copula functions have been used to enable a much more flexible environment in joint modelling. Incorporating a higher dimensional copula framework via symmetric 3-D Archimedean or elliptical copulas has statistical limits, and the preservation of all lower-level dependencies would be impossible. The heterogeneous dependency in CF events can be effectively modelled via a fully nested Archimedean (FNA) copula. Incorporating FNA under parametric settings is insufficiently flexible since it is restricted by the prior distributional assumption of the function type for both marginal density and copulas in parametric fittings. If the marginal density is of a specific parametric distribution, it could be problematic if underlying assumptions are violated. This study introduces a 3-D FNA copula simulation in a semiparametric setting by introducing nonparametric marginal distributions conjoined with parametric copula density. The derived semiparametric FNA copula is applied in the trivariate model in compounding the joint impact of rainfall, storm surge, and river discharge based on 46 years of observations on the west coast of Canada. The performance of the derived model has also been compared with the FNA copula constructed with parametric marginal density. It is concluded that the performance of FNA with nonparametric marginals outperforms the FNA copula built under parametric settings. The derived model is employed in multivariate analysis of flood risks in trivariate primary joint and conditional joint return periods. The trivariate hydrologic risk is analyzed using failure probability (FP) statistics. The investigation reveals that trivariate events produce a higher FP than bivariate (or univariate) events; thus, neglecting trivariate joint analysis results in FP being underestimated. Moreover, it indicates that trivariate hydrologic risk values increase with an increase in the service time of hydraulic facilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助noobmaster采纳,获得10
1秒前
2秒前
今后应助houfei采纳,获得10
4秒前
Akim应助搞怪忆彤采纳,获得10
5秒前
柯一一应助小奇曲饼采纳,获得10
5秒前
安康完成签到,获得积分10
6秒前
螺旋桨发布了新的文献求助30
7秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
愉快的秋凌完成签到,获得积分10
10秒前
10秒前
zzzyyyppp应助科研通管家采纳,获得10
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
10秒前
金子完成签到,获得积分10
11秒前
11秒前
12秒前
noobmaster发布了新的文献求助10
13秒前
13秒前
14秒前
我是老大应助new采纳,获得10
17秒前
18秒前
马外奥发布了新的文献求助10
18秒前
叶暖发布了新的文献求助10
19秒前
19秒前
丘比特应助大狗砸采纳,获得30
20秒前
keyanbrant完成签到 ,获得积分10
21秒前
GAO发布了新的文献求助10
22秒前
内向半青发布了新的文献求助30
22秒前
23秒前
阳光的一应助明天见采纳,获得10
25秒前
ClarkLee完成签到,获得积分10
26秒前
26秒前
高分求助中
诺和针® 32G 4mm 说明书(2023年2月23日) 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899385
求助须知:如何正确求助?哪些是违规求助? 3444079
关于积分的说明 10833065
捐赠科研通 3168915
什么是DOI,文献DOI怎么找? 1750884
邀请新用户注册赠送积分活动 846335
科研通“疑难数据库(出版商)”最低求助积分说明 789157