亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise

数学 线性微分方程 白噪声 微分方程 随机微分方程 概率密度函数 概率逻辑 数学分析 高斯分布 齐次微分方程 线性系统 马尔可夫过程 应用数学 统计物理学 物理 统计 常微分方程 量子力学 微分代数方程
作者
Yi Luo,Meng‐Ze Lyu,Jianbing Chen,Pol D. Spanos
出处
期刊:Theoretical and Applied Mechanics Letters [Elsevier BV]
卷期号:13 (3): 100436-100436 被引量:21
标识
DOI:10.1016/j.taml.2023.100436
摘要

Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
高贵的沧海完成签到,获得积分20
9秒前
雪酪芋泥球完成签到 ,获得积分10
10秒前
Bin_Liu完成签到,获得积分20
14秒前
欢喜方盒发布了新的文献求助10
16秒前
Nancy0818完成签到 ,获得积分10
18秒前
22秒前
活泼蜜蜂完成签到,获得积分10
22秒前
27秒前
欢喜方盒完成签到,获得积分10
27秒前
30秒前
32秒前
33秒前
张啧啧啧发布了新的文献求助10
34秒前
易安发布了新的文献求助10
36秒前
典雅的纸飞机完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
41秒前
激动的晓筠完成签到 ,获得积分10
43秒前
NiceSunnyDay完成签到 ,获得积分10
47秒前
完美世界应助科研小贩采纳,获得10
52秒前
文艺的枫叶完成签到 ,获得积分10
52秒前
53秒前
1111完成签到 ,获得积分10
58秒前
Lalala发布了新的文献求助10
58秒前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
luckyhuuu应助科研通管家采纳,获得10
1分钟前
1分钟前
称心的语梦完成签到,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助Louki采纳,获得10
1分钟前
科研小贩完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
科研小贩发布了新的文献求助10
1分钟前
张易完成签到,获得积分10
1分钟前
忧虑的秋天完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
在学一会完成签到,获得积分10
1分钟前
Veronica完成签到,获得积分10
1分钟前
大模型应助易安采纳,获得10
1分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881469
求助须知:如何正确求助?哪些是违规求助? 3423925
关于积分的说明 10736621
捐赠科研通 3148759
什么是DOI,文献DOI怎么找? 1737514
邀请新用户注册赠送积分活动 838844
科研通“疑难数据库(出版商)”最低求助积分说明 784111