已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-time scale identification of key kinetic processes for lithium-ion batteries considering variable characteristic frequency

控制理论(社会学) 电压 计算机科学 工程类 电气工程 人工智能 控制(管理)
作者
Haotian Shi,Shunli Wang,Jianhong Liang,Paul Takyi‐Aninakwa,Xiao Yang,Carlos Fernández,Liping Wang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:82: 521-536 被引量:20
标识
DOI:10.1016/j.jechem.2023.02.022
摘要

The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply. In this paper, an efficient adaptive multi-time scale identification strategy is proposed to achieve high-fidelity modeling of complex kinetic processes inside the battery. More specifically, a second-order equivalent circuit model network considering variable characteristic frequency is constructed based on the high-frequency, medium-high-frequency, and low-frequency characteristics of the key kinetic processes. Then, two coupled sub-filters are developed based on forgetting factor recursive least squares and extended Kalman filtering methods and decoupled by the corresponding time-scale information. The coupled iterative calculation of the two sub-filter modules at different time scales is realized by the voltage response of the kinetic diffusion process. In addition, the driver of the low-frequency subalgorithm with the state of charge variation amount as the kernel is designed to realize the adaptive identification of the kinetic diffusion process parameters. Finally, the concept of dynamical parameter entropy is introduced and advocated to verify the physical meaning of the kinetic parameters. The experimental results under three operating conditions show that the mean absolute error and root-mean-square error metrics of the proposed strategy for voltage tracking can be limited to 13 and 16 mV, respectively. Additionally, from the entropy calculation results, the proposed method can reduce the dispersion of parameter identification results by a maximum of 40.72% and 70.05%, respectively, compared with the traditional fixed characteristic frequency algorithms. The proposed method paves the way for the subsequent development of adaptive state estimators and efficient embedded applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxun_0711应助摘星采纳,获得10
6秒前
肥肥猪发布了新的文献求助10
6秒前
体贴冰烟完成签到,获得积分20
9秒前
肃肃其羽完成签到 ,获得积分10
10秒前
11秒前
失眠万仇完成签到,获得积分20
12秒前
lijunliang完成签到 ,获得积分10
13秒前
芒果完成签到 ,获得积分10
13秒前
15秒前
16秒前
神勇半凡完成签到 ,获得积分10
18秒前
Slide完成签到 ,获得积分20
18秒前
滕擎发布了新的文献求助10
20秒前
卓头OvQ发布了新的文献求助10
20秒前
自由的无色完成签到 ,获得积分10
20秒前
cin发布了新的文献求助10
21秒前
端庄一刀完成签到 ,获得积分10
22秒前
23秒前
默默善愁发布了新的文献求助30
26秒前
南国之霄发布了新的文献求助10
27秒前
精明玲完成签到 ,获得积分10
30秒前
西西完成签到,获得积分10
33秒前
肥肥猪完成签到,获得积分10
33秒前
33秒前
丘比特应助失眠万仇采纳,获得10
34秒前
s20001021s完成签到 ,获得积分10
36秒前
乔木自燃完成签到 ,获得积分20
37秒前
冯小路完成签到 ,获得积分10
37秒前
星希完成签到 ,获得积分10
38秒前
lixuebin完成签到 ,获得积分10
38秒前
研友_ZGRvon完成签到,获得积分0
39秒前
45秒前
45秒前
46秒前
menghongmei完成签到 ,获得积分10
48秒前
季秋实完成签到,获得积分10
50秒前
北觅完成签到 ,获得积分10
55秒前
深情的羞花完成签到 ,获得积分10
56秒前
lyfing完成签到 ,获得积分10
56秒前
swslgd完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090300
求助须知:如何正确求助?哪些是违规求助? 4304991
关于积分的说明 13415058
捐赠科研通 4130561
什么是DOI,文献DOI怎么找? 2262480
邀请新用户注册赠送积分活动 1266327
关于科研通互助平台的介绍 1201063