Learning knowledge graph embedding with a dual-attention embedding network

对偶(语法数字) 嵌入 计算机科学 图形 知识图 人工智能 图嵌入 对偶图 理论计算机科学 机器学习 折线图 文学类 艺术
作者
Haichuan Fang,Youwei Wang,Zhen Tian,Yangdong Ye
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:212: 118806-118806 被引量:36
标识
DOI:10.1016/j.eswa.2022.118806
摘要

Knowledge Graph Embedding (KGE) aims to retain the intrinsic structural information of knowledge graphs (KGs) via representation learning, which is critical for various downstream tasks including personalized recommendations, intelligent search, and relation extraction. The graph convolutional network (GCN), due to its remarkable performance in modeling graph data, has recently been studied extensively in the KGE field. However, when learning entity representations, most attention-based GCN approaches treat neighborhoods as a whole to measure their importance without considering the direction information of relations. Additionally, these approaches make relation representations perform self-update via a learnable matrix, resulting in ignoring the impact of neighborhood information on representation learning of relations. To this end, this study presents an innovative framework, namely learning knowledge graph embedding with a dual-attention embedding network (D-AEN), to jointly propagate and update the representations of both relations and entities via fusing neighborhood information. Here the dual attentions consist of a bidirectional attention mechanism and a relation-specific attention mechanism for jointly measuring the importance of neighborhoods in respectively learning entity and relation representations. Thus D-AEN enables elements like relations and entities to interact well semantically, which makes their learned representations retain more effective information of KGs. Extensive experimental results on three standard link prediction datasets demonstrate the superiority of D-AEN over several state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助聪明的剑愁采纳,获得10
刚刚
刚刚
刚刚
1秒前
整齐豆芽发布了新的文献求助10
1秒前
tt完成签到 ,获得积分10
1秒前
SS1025861完成签到 ,获得积分10
1秒前
田様应助谦让的易巧采纳,获得10
1秒前
2秒前
2秒前
yyyyl发布了新的文献求助30
2秒前
2秒前
chenpeng123发布了新的文献求助10
3秒前
科研通AI6应助Hang采纳,获得10
3秒前
H华ua应助重要的尔安采纳,获得10
3秒前
2305814008完成签到,获得积分20
4秒前
4秒前
浮沉发布了新的文献求助10
5秒前
核桃发布了新的文献求助10
5秒前
杰尼龟006发布了新的文献求助10
5秒前
Jane完成签到,获得积分10
6秒前
6秒前
青柠苏打水应助lzy采纳,获得10
6秒前
静静完成签到,获得积分10
6秒前
6秒前
7秒前
小白发布了新的文献求助10
7秒前
文静的寒松完成签到,获得积分10
7秒前
Rhenium完成签到 ,获得积分10
7秒前
秋天落叶林完成签到,获得积分10
7秒前
7秒前
8秒前
轮海完成签到,获得积分10
8秒前
9秒前
9秒前
jojo发布了新的文献求助10
9秒前
trq1007发布了新的文献求助10
10秒前
酷波er应助hyominhsu采纳,获得10
10秒前
10秒前
张占完成签到,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4477620
求助须知:如何正确求助?哪些是违规求助? 3935317
关于积分的说明 12209278
捐赠科研通 3589986
什么是DOI,文献DOI怎么找? 1974081
邀请新用户注册赠送积分活动 1011423
科研通“疑难数据库(出版商)”最低求助积分说明 904987