氧化还原
吉布斯自由能
钠
拉伤
离子
化学
纳米技术
材料科学
化学工程
无机化学
热力学
生物
物理
有机化学
解剖
工程类
作者
Minxia Jiang,Yingjie Hu,Baoguang Mao,Yixin Wang,Zhen Yang,Tao Meng,Xin Wang,Minhua Cao
标识
DOI:10.1038/s41467-022-33329-2
摘要
Manipulating the reversible redox chemistry of transition metal dichalcogenides for energy storage often faces great challenges as it is difficult to regulate the discharged products directly. Herein we report that tensile-strained MoSe2 (TS-MoSe2) can act as a host to transfer its strain to corresponding discharged product Mo, thus contributing to the regulation of Gibbs free energy change (ΔG) and enabling a reversible sodium storage mechanism. The inherited strain results in lattice distortion of Mo, which adjusts the d-band center upshifted closer to the Fermi level to enhance the adsorbability of Na2Se, thereby leading to a decreased ΔG of the redox chemistry between Mo/Na2Se and MoSe2. Ex situ and in situ experiments revealed that, unlike the unstrained MoSe2, TS-MoSe2 shows a highly reversible sodium storage, along with an evidently improved reaction kinetics. This work sheds light on the study on electrochemical energy storage mechanism of other electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI