Differential evolution using improved crowding distance for multimodal multiobjective optimization

多目标优化 计算机科学 数学优化 拥挤 帕累托原理 差异进化 空格(标点符号) 欧几里德距离 欧几里得空间 秩(图论) 集合(抽象数据类型) 过程(计算) 最优化问题 数学 人工智能 神经科学 纯数学 程序设计语言 操作系统 组合数学 生物
作者
Caitong Yue,Ponnuthurai Nagaratnam Suganthan,Jing Liang,Boyang Qu,Kunjie Yu,Yongsheng Zhu,Yan Li
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:62: 100849-100849 被引量:181
标识
DOI:10.1016/j.swevo.2021.100849
摘要

Abstract In multiobjective optimization, the relationship between decision space and objective space is generally assumed to be a one-to-one mapping, but it is not always the case. In some problems, different variables have the same or similar objective value, which means a many-to-one mapping. In this situation, there is more than one Pareto Set (PS) mapping to the same Pareto Front (PF) and these problems are called multimodal multiobjective problems. This paper proposes a multimodal multiobjective differential evolution algorithm to solve these problems. In the proposed method, the difference vector is generated taking the diversity in both decision and objective space into account. The way to calculate crowding distance is quite different from the others. In the crowding distance calculation process, all the selected individuals are taken into account instead of considering each Pareto rank separately. The crowding distance in decision space is replaced with the weighted sum of Euclidean distances to its neighbors. In the environmental selection process, not all the individuals in top ranks are selected, because some of them may be very crowded. Instead, the potential solutions in the bottom rank are given a chance to evolve. With these operations, the proposed algorithm can maintain multiple PSs of multimodal multiobjective optimization problems and improve the diversity in both decision and objective space. Experimental results show that the proposed method can achieve high comprehensive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Perry完成签到,获得积分10
1秒前
秋澍壆完成签到,获得积分10
1秒前
Vme50完成签到,获得积分10
1秒前
lhaoran完成签到,获得积分10
2秒前
KaleighCarlos应助zhouleiwang采纳,获得30
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
汉堡包应助孙欣阳采纳,获得20
3秒前
大树完成签到 ,获得积分10
3秒前
树洞里的刺猬完成签到,获得积分10
4秒前
4秒前
4秒前
mmmm完成签到,获得积分10
5秒前
Yidie发布了新的文献求助10
5秒前
5秒前
阿边完成签到 ,获得积分10
5秒前
Orange应助shenyanlei采纳,获得10
5秒前
蔡雯完成签到,获得积分10
5秒前
淡淡茉莉发布了新的文献求助10
6秒前
Zhouzhou完成签到,获得积分10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
钦林发布了新的文献求助10
8秒前
Nedel完成签到,获得积分20
9秒前
viettu7d完成签到,获得积分10
10秒前
善学以致用应助美好斓采纳,获得10
10秒前
zhengshanbei发布了新的文献求助10
10秒前
幸运星发布了新的文献求助10
10秒前
wbsj发布了新的文献求助10
11秒前
3080发布了新的文献求助30
11秒前
大气的煎饼完成签到 ,获得积分10
11秒前
halide完成签到,获得积分10
11秒前
11秒前
liman完成签到,获得积分20
12秒前
田様应助等等采纳,获得10
12秒前
12秒前
NexusExplorer应助没心情A采纳,获得10
12秒前
remix发布了新的文献求助10
13秒前
yznfly应助ha采纳,获得100
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213