重量分析
清洁能源
多孔性
多孔介质
化学工程
环境科学
材料科学
化学
环境工程
复合材料
有机化学
工程类
作者
Zhijie Chen,Penghao Li,Ryther Anderson,Xingjie Wang,Xuan Zhang,Lee Robison,Louis R. Redfern,Shinya Moribe,Timur İslamoğlu,Diego A. Gómez‐Gualdrón,Taner Yildirim,J. Fraser Stoddart,Omar K. Farha
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2020-04-16
卷期号:368 (6488): 297-303
被引量:592
标识
DOI:10.1126/science.aaz8881
摘要
A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m2 g-1 and a volumetric BET area of 2060 m2 cm-3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g-1) with an uptake of 0.66 g g-1 [262 cm3 (standard temperature and pressure, STP) cm-3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g-1 [238 cm3 (STP) cm-3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter-1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).
科研通智能强力驱动
Strongly Powered by AbleSci AI