亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model with the GBDT for Colorectal Adenoma Risk Diagnosis

逻辑回归 接收机工作特性 支持向量机 医学 随机森林 人工智能 结直肠癌 机器学习 决策树 结肠镜检查 计算机科学 内科学 肿瘤科 癌症
作者
Junbo Gao,Lifeng Zhang,Gaiqing Yu,Guoqiang Qu,Yanfeng Li,Xuebing Yang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:15 (9): 971-979 被引量:15
标识
DOI:10.2174/1574893614666191120142005
摘要

Background and Objective: Colorectal cancer (CRC) is a common malignant tumor of the digestive system; it is associated with high morbidity and mortality. However, an early prediction of colorectal adenoma (CRA) that is a precancerous disease of most CRC patients provides an opportunity to make an appropriate strategy for prevention, early diagnosis and treatment. It has been aimed to develop a machine learning model to predict CRA that could assist physicians in classifying high-risk patients, make informed choices and prevent CRC. Methods: Patients who had undergone a colonoscopy to fill out a questionnaire at the Sixth People Hospital of Shanghai in China from July 2018 to November 2018 were instructed. A classification model with the gradient boosting decision tree (GBDT) was developed to predict CRA. This model was compared with three other models, namely, random forest (RF), support vector machine (SVM), and logistic regression (LR). The area under the receiver operating characteristic curve (AUC) was used to evaluate performance of the models. Results: Among the 245 included patients, 65 patients had CRA. The area under the receiver operating characteristic (AUCs) of GBDT, RF, SVM ,and LR with 10 fold-cross validation was 0.8131, 0.74, 0.769 and 0.763. An online prediction service, CRA Inference System, to substantialize the proposed solution for patients with CRA was also built. Conclusion: Four classification models for CRA prediction were developed and compared, and the GBDT model showed the highest performance. Implementing a GBDT model for screening can reduce the cost of time and money and help physicians identify high-risk groups for primary prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
44秒前
liam发布了新的文献求助10
44秒前
1分钟前
1分钟前
1分钟前
liam发布了新的文献求助10
1分钟前
2分钟前
穆振家完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
liam发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
hoangphong完成签到,获得积分10
5分钟前
个性归尘应助Vivianxly采纳,获得30
6分钟前
7分钟前
布吉岛呀完成签到 ,获得积分10
7分钟前
茜茜完成签到 ,获得积分10
8分钟前
8分钟前
敉_发布了新的文献求助10
8分钟前
科研通AI5应助无私元芹采纳,获得10
9分钟前
敉_完成签到,获得积分20
9分钟前
小马甲应助科研通管家采纳,获得10
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
9分钟前
球球发布了新的文献求助10
9分钟前
9分钟前
9分钟前
沉静的安青完成签到 ,获得积分10
9分钟前
知夏发布了新的文献求助10
9分钟前
9分钟前
9分钟前
知夏完成签到,获得积分10
10分钟前
无私元芹发布了新的文献求助10
10分钟前
无私元芹完成签到,获得积分10
10分钟前
王晓宇完成签到,获得积分10
10分钟前
好好学习发布了新的文献求助30
11分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837436
求助须知:如何正确求助?哪些是违规求助? 3379588
关于积分的说明 10509913
捐赠科研通 3099204
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552