CRISPRidentify: identification of CRISPR arrays using machine learning approach

清脆的 反式激活crRNA 生物 计算生物学 鉴定(生物学) 计算机科学 遗传学 Cas9 基因 植物
作者
Alexander Mitrofanov,Omer S. Alkhnbashi,Sergey Shmakov,Kira S. Makarova,Eugene V. Koonin,Rolf Backofen
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:49 (4): e20-e20 被引量:41
标识
DOI:10.1093/nar/gkaa1158
摘要

Abstract CRISPR–Cas are adaptive immune systems that degrade foreign genetic elements in archaea and bacteria. In carrying out their immune functions, CRISPR–Cas systems heavily rely on RNA components. These CRISPR (cr) RNAs are repeat-spacer units that are produced by processing of pre-crRNA, the transcript of CRISPR arrays, and guide Cas protein(s) to the cognate invading nucleic acids, enabling their destruction. Several bioinformatics tools have been developed to detect CRISPR arrays based solely on DNA sequences, but all these tools employ the same strategy of looking for repetitive patterns, which might correspond to CRISPR array repeats. The identified patterns are evaluated using a fixed, built-in scoring function, and arrays exceeding a cut-off value are reported. Here, we instead introduce a data-driven approach that uses machine learning to detect and differentiate true CRISPR arrays from false ones based on several features. Our CRISPR detection tool, CRISPRidentify, performs three steps: detection, feature extraction and classification based on manually curated sets of positive and negative examples of CRISPR arrays. The identified CRISPR arrays are then reported to the user accompanied by detailed annotation. We demonstrate that our approach identifies not only previously detected CRISPR arrays, but also CRISPR array candidates not detected by other tools. Compared to other methods, our tool has a drastically reduced false positive rate. In contrast to the existing tools, our approach not only provides the user with the basic statistics on the identified CRISPR arrays but also produces a certainty score as a practical measure of the likelihood that a given genomic region is a CRISPR array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CipherSage应助Dragonfln采纳,获得10
2秒前
agony完成签到 ,获得积分10
2秒前
风中的芷蕾完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助czrrrrrrrr采纳,获得10
2秒前
3秒前
乐观的小土豆完成签到,获得积分10
3秒前
cyy1226完成签到,获得积分10
3秒前
3秒前
别摆烂了发布了新的文献求助10
4秒前
5秒前
科研通AI5应助雾昂采纳,获得30
5秒前
十一完成签到 ,获得积分10
5秒前
小新发布了新的文献求助10
5秒前
6秒前
浮游应助kyf采纳,获得10
6秒前
英姑应助默默采纳,获得10
6秒前
科研通AI5应助王焕玉采纳,获得10
6秒前
7秒前
testmanfuxk发布了新的文献求助10
7秒前
ydh发布了新的文献求助10
8秒前
诚心的雁关注了科研通微信公众号
9秒前
hihihihihi完成签到 ,获得积分10
9秒前
染染发布了新的文献求助10
11秒前
领导范儿应助13击采纳,获得10
11秒前
12秒前
别摆烂了发布了新的文献求助10
13秒前
16秒前
17秒前
LJL发布了新的文献求助30
17秒前
17秒前
17秒前
ydh完成签到,获得积分10
18秒前
星辰大海应助HAOS采纳,获得30
18秒前
梦比优斯完成签到,获得积分20
19秒前
19秒前
李鹏完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244