Understanding Place Characteristics in Geographic Contexts through Graph Convolutional Neural Networks

计算机科学 图形 卷积神经网络 可预测性 大都市区 人工智能 相关性(法律) 机器学习 数据科学 理论计算机科学 地理 数学 政治学 统计 考古 法学
作者
Di Zhu,Fan Zhang,Shengyin Wang,Yaoli Wang,Ximeng Cheng,Zhou Huang,Yu Liu
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:110 (2): 408-420 被引量:125
标识
DOI:10.1080/24694452.2019.1694403
摘要

Inferring the unknown properties of a place relies on both its observed attributes and the characteristics of the places to which it is connected. Because place characteristics are unstructured and the metrics for place connections can be diverse, it is challenging to incorporate them in a spatial prediction task where the results could be affected by how the neighborhoods are delineated and where the true relevance among places is hard to identify. To bridge the gap, we introduce graph convolutional neural networks (GCNNs) to model places as a graph, where each place is formalized as a node, place characteristics are encoded as node features, and place connections are represented as the edges. GCNNs capture the knowledge of the relevant geographic context by optimizing the weights among graph neural network layers. A case study was designed in the Beijing metropolitan area to predict the unobserved place characteristics based on the observed properties and specific place connections. A series of comparative experiments was conducted to highlight the influence of different place connection measures on the prediction accuracy and to evaluate the predictability across different characteristic dimensions. This research enlightens the promising future of GCNNs in formalizing places for geographic knowledge representation and reasoning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝闻道完成签到 ,获得积分10
刚刚
风趣的洙发布了新的文献求助10
1秒前
小豆豆完成签到 ,获得积分10
1秒前
kkxl完成签到,获得积分10
1秒前
凉小远完成签到,获得积分10
1秒前
丘比特应助嘻嘻嘻采纳,获得10
2秒前
teborlee完成签到,获得积分10
2秒前
2秒前
巧克力完成签到,获得积分10
2秒前
2秒前
2秒前
CodeCraft应助科研能手采纳,获得10
3秒前
3秒前
太阳当空照完成签到,获得积分10
3秒前
ugk完成签到,获得积分10
3秒前
殷勤的白玉完成签到,获得积分20
3秒前
3秒前
xiaofeifan发布了新的文献求助10
4秒前
qiukui完成签到,获得积分10
4秒前
zf完成签到,获得积分10
4秒前
4秒前
5秒前
冷艳的寻冬完成签到,获得积分10
5秒前
orixero应助斑马采纳,获得10
5秒前
5秒前
胖胖胖胖完成签到,获得积分10
5秒前
柠觉呢完成签到 ,获得积分10
6秒前
6秒前
wqy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
ezreal发布了新的文献求助30
6秒前
开心雨旋完成签到,获得积分10
7秒前
tyc发布了新的文献求助10
8秒前
科研通AI6应助听话的炳采纳,获得10
8秒前
深海鳕鱼完成签到,获得积分10
8秒前
zf发布了新的文献求助10
8秒前
zhaokkkk完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392