移动边缘计算
计算机网络
服务质量
隐藏物
实时计算
作者
Jianshu Luo,F. Richard Yu,Qianbin Chen,Lun Tang
标识
DOI:10.1109/twc.2019.2955129
摘要
Both mobile edge cloud (MEC) and software-defined networking (SDN) are technologies for next generation mobile networks. In this paper, we propose to simultaneously optimize energy consumption and quality of experience (QoE) metrics in video streaming over software-defined mobile networks (SDMN) combined with MEC. Specifically, we propose a novel mechanism to jointly consider buffer dynamics, video quality adaption, edge caching, video transcoding and transmission. First, we assume that the time-varying channel is a discrete-time Markov chain (DTMC). Then, based on this assumption, we formulate two optimization problems which can be depicted as a constrained Markov decision process (CMDP) and a Markov decision process (MDP). Then, we transform the CMDP problem into regular MDP by deploying Lyapunov technique. We utilize asynchronous advantage actor-critic (A3C) algorithm, one of the model-free deep reinforcement learning (DRL) methods, to solve the corresponding MDP issues. Simulation results are presented to show that the proposed scheme can achieve the goal of energy saving and QoE enhancement with the corresponding constraints satisfied.
科研通智能强力驱动
Strongly Powered by AbleSci AI