生物
大黄蜂
肠道菌群
16S核糖体RNA
基因
遗传学
生态学
微生物学
生态位
传粉者
授粉
栖息地
免疫学
花粉
作者
Zijing Zhang,Ming‐Fei Huang,Li‐Fei Qiu,Rui‐Hao Song,Z Zhang,Yi‐Wen Ding,Xin Zhou,Xue Zhang,Hao Zheng
标识
DOI:10.1111/1744-7917.12770
摘要
Abstract Bumblebees play an important role in maintaining the balance of natural and agricultural ecosystems, and the characteristic gut microbiota of bumblebees exhibit significant mutualistic functions. China has the highest diversity of bumblebees; however, gut microbiota of Chinese bumblebees have mostly been investigated through culture‐independent studies. Here, we analyzed the gut communities of bumblebees from Sichuan, Yunnan, and Shaanxi provinces in China through 16S ribosomal RNA amplicon sequencing and bacterial isolation. It revealed that the bumblebees examined in this study harbored two gut enterotypes as previously reported: one is dominated by Gilliamella and Snodgrassella , and the other is distinguished by prevalent environmental species. The gut compositions obviously varied among different individual bees. We then isolated 325 bacterial strains and the comparative genomic analysis of Gilliamella strains revealed that galactose and pectin digestion pathways were conserved in strains from bumblebees, while genes for the utilization of arabinose, mannose, xylose, and rhamnose were mostly lost. Only two strains from the Chinese bumblebees possess the multidrug‐resistant gene emrB , which is phylogenetically closely related to that from the symbionts of soil entomopathogenic nematode. In contrast, tetracycline‐resistant genes were uniquely present in three strains from the USA. Our results illustrate the prevalence of strain‐level variations in the metabolic potentials and the distributions of antibiotic‐resistant genes in Chinese bumblebee gut bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI