Radiomics Analysis Based on Ultrasound Images to Distinguish the Tumor Stage and Pathological Grade of Bladder Cancer

医学 分级(工程) 病态的 队列 接收机工作特性 阶段(地层学) 放射科 超声波 膀胱癌 T级 癌症 肿瘤科 病理 内科学 工程类 土木工程 古生物学 生物
作者
Ruizhi Gao,Rong Wen,Dong‐yue Wen,Jing Huang,Hui Qin,Xin Li,Xin‐rong Wang,Yun He,Hong Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:40 (12): 2685-2697 被引量:9
标识
DOI:10.1002/jum.15659
摘要

Objectives To identify the clinical value of ultrasound radiomic features in the preoperative prediction of tumor stage and pathological grade of bladder cancer (BLCA) patients. Methods We retrospectively collected patients who had been diagnosed with BLCA by pathology. Ultrasound‐based radiomic features were extracted from manually segmented regions of interest. Participants were randomly assigned to a training cohort and a validation cohort at a ratio of 7:3. Radiomic features were Z‐score normalized and submitted to dimensional reduction analysis (including Spearman's correlation coefficient analysis, the random forest algorithm, and statistical testing) for core feature selection. Classifiers for tumor stage and pathological grade prediction were then constructed. Prediction performance was estimated by the area under the curve (AUC) of the receiver operating characteristic curve and was verified by the validation cohort. Results A total of 5936 radiomic features were extracted from each of the ultrasound images obtained from 157 patients. The BLCA tumor stage and pathological grade prediction models were developed based on 30 and 35 features, respectively. Both models showed good predictive ability. For the tumor stage prediction model, the AUC was 0.94 in the training cohort and 0.84 in the validation cohort. For the pathological grade model, the AUCs obtained were 0.84 in the training cohort and 0.75 in the validation cohort. Conclusions The ultrasound‐based radiomics models performed well in the preoperative tumor staging and pathological grading of BLCA. These findings should be applied clinically to optimize treatment and to assess prognoses for BLCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由小萱完成签到,获得积分10
刚刚
顺心寻云完成签到,获得积分10
刚刚
完美的傲薇给完美的傲薇的求助进行了留言
刚刚
科研通AI6应助愉快雪曼采纳,获得10
刚刚
方羽发布了新的文献求助10
1秒前
XiaoBai完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
小呆呆发布了新的文献求助10
6秒前
lcsolar完成签到,获得积分10
7秒前
Ava应助henwunai7106采纳,获得10
10秒前
???完成签到,获得积分10
12秒前
科研通AI6应助穆头呼橹橹采纳,获得10
15秒前
神勇马里奥完成签到 ,获得积分10
15秒前
18秒前
yangkang完成签到,获得积分10
20秒前
顾矜应助Zhj采纳,获得10
20秒前
21秒前
完美的滑板完成签到 ,获得积分10
21秒前
快乐小子发布了新的文献求助10
21秒前
汉堡包应助凌晨幻舞采纳,获得10
22秒前
孟冬发布了新的文献求助10
22秒前
23秒前
23秒前
科研通AI2S应助金新皓采纳,获得10
23秒前
自觉雨文发布了新的文献求助10
24秒前
下课闹闹发布了新的文献求助10
25秒前
爱壹帆完成签到,获得积分10
26秒前
淼淼完成签到,获得积分10
28秒前
yu完成签到,获得积分10
29秒前
30秒前
stellachen完成签到,获得积分10
30秒前
31秒前
实验大牛完成签到,获得积分10
33秒前
34秒前
34秒前
Zhj发布了新的文献求助10
34秒前
充电宝应助芝麻球ii采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035772
求助须知:如何正确求助?哪些是违规求助? 4268764
关于积分的说明 13308252
捐赠科研通 4079533
什么是DOI,文献DOI怎么找? 2231534
邀请新用户注册赠送积分活动 1239737
关于科研通互助平台的介绍 1165643