Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

过电位 格式化 法拉第效率 贵金属 可逆氢电极 无机化学 电解质 试剂 纳米技术 二氧化碳电化学还原 电极 化学 化学工程 材料科学 一氧化碳 催化作用 电化学 工作电极 有机化学 物理化学 工程类
作者
Min Liu,Yuanjie Pang,Bo Zhang,Phil De Luna,Oleksandr Voznyy,Jixian Xu,Xueli Zheng,Cao‐Thang Dinh,Fengjia Fan,Changhong Cao,F. Pelayo Garcı́a de Arquer,Tina Saberi Safaei,Adam Mepham,Anna Klinkova,Eugenia Kumacheva,Tobin Filleter,David Sinton,Shana O. Kelley,Edward H. Sargent
出处
期刊:Nature [Nature Portfolio]
卷期号:537 (7620): 382-386 被引量:1742
标识
DOI:10.1038/nature19060
摘要

Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
陈程完成签到,获得积分10
刚刚
Owen应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助真水无香123采纳,获得10
2秒前
2秒前
2秒前
3秒前
4秒前
赘婿应助粗暴的宛海采纳,获得10
5秒前
1234发布了新的文献求助10
5秒前
Jasper应助负责觅海采纳,获得10
7秒前
8秒前
suiyi发布了新的文献求助10
8秒前
8秒前
小丑鱼儿发布了新的文献求助10
9秒前
夜游的鱼发布了新的文献求助10
9秒前
11秒前
斐嘿嘿发布了新的文献求助10
12秒前
郭德好发布了新的文献求助10
12秒前
裘老三完成签到,获得积分20
12秒前
13秒前
aero完成签到 ,获得积分10
13秒前
1234完成签到,获得积分10
13秒前
落英芬芳完成签到,获得积分10
14秒前
16秒前
bfbdfbdf发布了新的文献求助10
18秒前
Liang完成签到 ,获得积分10
18秒前
吃西瓜的小胖猪完成签到,获得积分10
19秒前
CodeCraft应助真水无香123采纳,获得10
19秒前
19秒前
20秒前
福明明发布了新的文献求助10
20秒前
内向寒云发布了新的文献求助50
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195677
求助须知:如何正确求助?哪些是违规求助? 3731276
关于积分的说明 11751681
捐赠科研通 3405975
什么是DOI,文献DOI怎么找? 1868704
邀请新用户注册赠送积分活动 924906
科研通“疑难数据库(出版商)”最低求助积分说明 835549