Machine Learning Outperforms Existing Clinical Scoring Tools in the Prediction of Postoperative Atrial Fibrillation During Intensive Care Unit Admission After Cardiac Surgery

重症监护室 接收机工作特性 医学 逻辑回归 机器学习 随机森林 支持向量机 心脏外科 人工智能 决策树 曲线下面积 内科学 心脏病学 心房颤动 计算机科学
作者
Roshan Karri,Andrew Kawai,Yoke Jia Thong,Dhruvesh M. Ramson,Luke A. Perry,Reny Segal,Julian A. Smith,Jahan C. Penny‐Dimri
出处
期刊:Heart Lung and Circulation [Elsevier BV]
卷期号:30 (12): 1929-1937 被引量:25
标识
DOI:10.1016/j.hlc.2021.05.101
摘要

Objective(s) Using the Medical Information Mart for Intensive Care III (MIMIC-III) database, we compared the performance of machine learning (ML) to the to the established gold standard scoring tool (POAF Score) in predicting postoperative atrial fibrillation (POAF) during intensive care unit (ICU) admission after cardiac surgery. Methods Random forest classifier (RF), decision tree classifier (DT), logistic regression (LR), K neighbours classifier (KNN), support vector machine (SVM), and gradient boosted machine (GBM) were compared to the POAF Score. Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of ML models. POAF Score performance confidence intervals were generated using 1,000 bootstraps. Risk profiles for GBM were generated using Shapley additive values. Results A total of 6,349 ICU admissions encompassing 6,040 patients were included. POAF occurred in 1,364 of the 6,349 admissions (21.5%). For predicting POAF during ICU admission after cardiac surgery, GBM, LR, RF, KNN, SVM and DT achieved an AUC of 0.74 (0.71–0.77), 0.73 (0.71–0.75), 0.72 (0.69–0.75), 0.68 (0.67–0.69), 0.67 (0.66–0.68) and 0.59 (0.55–0.63) respectively. The POAF Score AUC was 0.63 (0.62–0.64). Shapley additive values analysis of GBM generated patient level explanations for each prediction. Conclusion Machine learning models based on readily available preoperative data can outperform clinical scoring tools for predicting POAF during ICU admission after cardiac surgery. Explanatory models are shown to have potential in personalising POAF risk profiles for patients by illustrating probabilistic input variable contributions. Future research is required to evaluate the clinical utility and safety of implementing ML-driven tools for POAF prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
everglow发布了新的文献求助10
刚刚
fengge完成签到,获得积分10
刚刚
青山完成签到 ,获得积分10
1秒前
kkkk完成签到,获得积分10
1秒前
2秒前
科目三应助光亮问凝采纳,获得10
2秒前
亭台青盖晚完成签到,获得积分20
3秒前
3秒前
3秒前
tonyfountain发布了新的文献求助10
3秒前
Euan完成签到,获得积分10
4秒前
曾医生发布了新的文献求助20
5秒前
7秒前
小杭76应助王啵啵采纳,获得10
7秒前
菜就多练完成签到,获得积分10
9秒前
9秒前
9秒前
孟一帆发布了新的文献求助10
10秒前
上官若男应助LHT采纳,获得10
10秒前
10秒前
小蘑菇应助cistronic采纳,获得10
11秒前
rikii发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
wanci应助忧郁小蘑菇采纳,获得10
12秒前
波波冰发布了新的文献求助10
13秒前
夜话风陵杜完成签到 ,获得积分0
13秒前
冰霜完成签到,获得积分10
13秒前
天天快乐应助仲颖采纳,获得10
14秒前
Glufo发布了新的文献求助10
14秒前
jzh发布了新的文献求助30
14秒前
优雅苑睐完成签到,获得积分10
15秒前
Fuch发布了新的文献求助10
15秒前
15秒前
落叶的季节完成签到,获得积分10
16秒前
核桃发布了新的文献求助10
16秒前
南北发布了新的文献求助10
16秒前
16秒前
小蘑菇应助Accept采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636