强化学习
控制理论(社会学)
稳健性(进化)
航向(导航)
计算机科学
超调(微波通信)
自适应控制
滑模控制
趋同(经济学)
有界函数
控制器(灌溉)
车辆动力学
制导系统
控制工程
工程类
控制(管理)
人工智能
非线性系统
数学
经济增长
基因
经济
汽车工程
化学
生物
生物化学
物理
航空航天工程
数学分析
农学
量子力学
电信
作者
Alejandro González-García,Herman Castañeda,Leonardo Garrido
出处
期刊:Global Oceans 2020: Singapore – U.S. Gulf Coast
日期:2020-10-05
卷期号:: 1-7
被引量:24
标识
DOI:10.1109/ieeeconf38699.2020.9389360
摘要
This paper presents a guidance and control scheme for an unmanned surface vehicle. The approach combines a deep reinforcement learning based guidance law that can learn the dynamics of vessel with an adaptive sliding mode controller to achieve path-following. The guidance implements a deep deterministic policy gradient algorithm to obtain the desired heading command, whereas the adaptive control drives the heading and surge speed. The proposed guidance has self-learning ability based on evaluative feedback, which does not require any prior knowledge of the dynamic system, and the controller exhibits robustness against bounded uncertainties and perturbations, control gain non-overestimation, and chattering reduction. Simulation results show that the proposed guidance and control law achieves fast convergence and small overshoot, and improved performance when compared against line-of-sight based guidance laws.
科研通智能强力驱动
Strongly Powered by AbleSci AI