Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation

仰角(弹道) 地形 导线 地理 地图学 卫星图像 人工智能 计算机科学 遥感 工程类 结构工程 操作系统
作者
Huan Ning,Zhenlong Li,Xinyue Ye,Shaohua Wang,Wenbo Wang,Xiao Huang
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:36 (7): 1317-1342 被引量:37
标识
DOI:10.1080/13658816.2021.1981334
摘要

Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助混沌武士采纳,获得10
1秒前
2秒前
2秒前
2秒前
NexusExplorer应助不爱写论文采纳,获得10
3秒前
3秒前
搞怪的雨南完成签到,获得积分10
3秒前
4秒前
4秒前
Demon724发布了新的文献求助10
4秒前
xyy完成签到,获得积分10
4秒前
5秒前
5秒前
孤蚀月发布了新的文献求助10
5秒前
0109发布了新的文献求助10
5秒前
DrJiang完成签到,获得积分10
5秒前
ERIS发布了新的文献求助10
5秒前
赖晨靓完成签到 ,获得积分10
6秒前
小马甲应助年轻的烧鹅采纳,获得10
7秒前
7秒前
7秒前
8秒前
Ava应助williams采纳,获得10
8秒前
8秒前
隐形曼青应助clihye采纳,获得10
9秒前
9秒前
浅听风吟完成签到,获得积分10
9秒前
xiaoyu1完成签到,获得积分10
9秒前
刘红意发布了新的文献求助10
10秒前
fancy完成签到,获得积分10
11秒前
12秒前
斯文败类应助tang采纳,获得10
12秒前
dd发布了新的文献求助10
13秒前
亚尔发布了新的文献求助10
13秒前
13秒前
激昂的蜗牛完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
小一一一发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152