亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

First Report of Epicoccum sorghinum Causing Leaf Sheath and Leaf Spot on Maize in China.

生物 叶斑病 植物 园艺 斑点 分生孢子
作者
Tangmin Chen,Yongjing Xie,Qing Sun,Xin-Chi Shi,Su-Yan Wang,Pedro Laborda
出处
期刊:Plant Disease [American Phytopathological Society]
标识
DOI:10.1094/pdis-04-21-0746-pdn
摘要

In November 2020, leaf sheath on maize (Zea mays) was detected in southeastern Jiangsu (Nantong municipality; 120.54° E, 31.58° N) in China. Physiologically mature plants, 13 weeks of cultivation (at the harvest stage), exhibited red-brown lesions in stem and leaves, and dried-up stem (Figure 1). The symptoms were observed on approximately 95% of the maize plants in a 0.8 ha maize field surrounded by old sorghum fields and the crop yield was decreased by 70-85% with respect previous years, when no disease symptoms were detected. Small pieces, approximately 0.3 cm2 in size, of symptomatic tissue were surface sterilized in 1.5% NaOCl for 1 min, and washed twice with sterile ddH2O. The pathogen was isolated (one isolate was obtained) and cultured on PDA medium, containing chloramphenicol (50 µg/mL), under darkness at 26 oC for 3 days. Amplification of internal transcribed spacer (ITS), large subunit (LSU), actin (ACT) and β-tubulin (TUB2) genes was performed using ITS1/ITS4, LR0R/LR7, ACT512F/ACT783R and T1/Bt2b primers, respectively (Ma et al. 2021). Sequences were submitted to GenBank under accession numbers MW800180 (ITS), MW800361 (LSU), MW845677 (ACT) and MW892439 (TUB2). Blast search revealed that the ITS sequence had 100% (492/492 bp) homology with E. sorghinum LY-D-1-1, MT604999, LSU had 98% (1075/1091 bp) homology with E. sorghinum GZDS2018BXT010, MK516207, ACT had 96% (214/222 bp) homology with E. sorghinum M3, MK044832, and TUB2 had 99% (498/499 bp) homology with E. sorghinum BJ-F1, MF987525. Molecular phylogenetic tree was constructed using MEGA7 to confirm the identity of the pathogen. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model, and the tree with the highest likelihood (-1774.9882) is shown in Figure 2. Bipolaris, Curvularia and Fusarium spp. found causing leaf spot on maize were included in the phylogenetic tree (Liu et al. 2021; Reyes Gaige et al. 2020; Chang et al. 2016). To confirm pathogenicity, a sterilized spatula was used to make wounds (3 mm diameter, 1 mm depth) on the stem and leaves of 2-week old maize plants. A solution containing 1 × 108 spores/mL (20 µL) was injected in the wound, whereas sterilized ddH2O was used in the control experiment. Inoculated plants were maintained in a growth chamber at 28 °C and 60% relative humidity for 3 days, observing fast-growing necrotic lesions in both stem and leaves. The pathogen was recovered from the infected plants and its identity was confirmed by morphological and sequence analyses. Microscope observations indicated the presence of chlamydospores, oval conidia (3 × 5 µm) and round pycnidia (60-100 µm diameter), and agree with those previously reported for the morphology of E. sorghinum (Bao et al. 2019). During last 2 years, E. sorghinum was reported to cause leaf spot on a number of relevant agricultural crops in China, including taro, Brassica parachinensis, tea, rice and wheat (Du et al. 2020; Li et al. 2020; Liu et al. 2020a, 2020b), confirming the expansion and host promiscuity of this pathogen. The pathogen was also reported to cause leaf spot on maize in Brazil in 2004 (Do Amaral et al. 2004); however, this is the first report of E. sorghinum causing leaf sheath and leaf spot on maize in China. Maize an important agricultural crop in China with more than 168 million tons produced in 2019. The observed yield loss and disease incidence of the isolated strain suggest that E. sorghinum may be a threat to maize production in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
球球尧伞耳完成签到,获得积分10
7秒前
麦斯发布了新的文献求助10
8秒前
彩色完成签到 ,获得积分10
8秒前
Ji完成签到,获得积分10
10秒前
LX完成签到 ,获得积分10
11秒前
11秒前
sss完成签到 ,获得积分10
14秒前
顺心未来发布了新的文献求助10
16秒前
22秒前
HeWang发布了新的文献求助10
26秒前
orixero应助只只呀采纳,获得10
32秒前
primrose完成签到 ,获得积分10
38秒前
HeWang完成签到,获得积分10
38秒前
NexusExplorer应助Zzzzzzzz采纳,获得30
40秒前
赘婿应助麦斯采纳,获得10
45秒前
konosuba完成签到,获得积分0
48秒前
努力加油煤老八完成签到 ,获得积分10
51秒前
56秒前
华仔应助满天星采纳,获得10
1分钟前
1分钟前
只只呀发布了新的文献求助10
1分钟前
1分钟前
斯寜应助upsoar采纳,获得10
1分钟前
Cherry完成签到,获得积分20
1分钟前
坦率绮山完成签到 ,获得积分10
1分钟前
无误发布了新的文献求助10
1分钟前
1分钟前
greentea发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
满天星发布了新的文献求助10
1分钟前
mtt发布了新的文献求助10
1分钟前
1分钟前
北风应助只只呀采纳,获得10
1分钟前
我是老大应助mtt采纳,获得10
1分钟前
1分钟前
英俊的铭应助内向的绮南采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779050
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219547
捐赠科研通 3039767
什么是DOI,文献DOI怎么找? 1668404
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487