光电流
化学
极化(电化学)
异质结
电子转移
半导体
生物传感器
抗坏血酸
光电子学
钙钛矿(结构)
纳米棒
材料科学
纳米技术
光化学
物理化学
结晶学
生物化学
食品科学
作者
Hao Yang,Min Zhang,Lei Wang,Renzhong Yu,Wenwen Tu,Zhaoyin Wang,Rui Wang,Huan Gao,Zhihui Dai
标识
DOI:10.1021/acs.analchem.1c01457
摘要
Polarization of photoactive materials in current photoelectric (PE) systems is difficult to be adjusted, and thus electron-transfer routes of these systems are unchangeable, which limits their performance in photoelectrochemical (PEC) analysis. Herein, we attempted to modulate the polarization of perovskite-based heterostructures by both in situ semiconductor generation and enzyme catalysis. Owing to their band alignments, Cs3Bi2Br9 quantum dots (QDs) and BiOBr are confirmed to construct a Z-scheme structure, leading to a large anodic photocurrent. In the presence of ascorbic acid 2-phosphate (AAP), BiPO4 is generated on the surface of the Cs3Bi2Br9 QDs/BiOBr heterostructure, reassigning energy bands of BiOBr. Accordingly, polarization of the photoactive materials is converted, and a new Z-scheme structure with a reversed electron-transfer route is constructed, which leads to an evident cathodic photocurrent. Furthermore, abundant electron donors can be obtained by catalyzing AAP with alkaline phosphatase (ALP). In this case, photogenerated holes in BiOBr are preferentially annihilated by electron donors, thereby blocking transfer of photogenerated electrons in the Cs3Bi2Br9 QDs/BiOBr/BiPO4 heterostructure. Consequently, a second polarization conversion is triggered by enzyme catalysis, resulting in the recovery of an anodic photocurrent. Benefited from the polarization conversion, a PEC biosensor with a feature of two-wing signal switch is designed, which remarkably enlarges the range of the signal response and subsequently improves the analytical performance. As a result, ALP in small volume of human serum can be quantified with this method. In this work, polarization of perovskite-based photoactive materials is tuned, proposing an alternative perspective on the design of advanced PE systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI