Batch effects in population genomic studies with low‐coverage whole genome sequencing data: Causes, detection and mitigation

生物 人口 推论 深度测序 计算生物学 数据挖掘 基因组 计算机科学 遗传学 人工智能 基因 社会学 人口学
作者
Runyang Nicolas Lou,Nina Overgaard Therkildsen
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:22 (5): 1678-1692 被引量:24
标识
DOI:10.1111/1755-0998.13559
摘要

Over the past few decades, there has been an explosion in the amount of publicly available sequencing data. This opens new opportunities for combining data sets to achieve unprecedented sample sizes, spatial coverage or temporal replication in population genomic studies. However, a common concern is that nonbiological differences between data sets may generate patterns of variation in the data that can confound real biological patterns, a problem known as batch effects. In this paper, we compare two batches of low-coverage whole genome sequencing (lcWGS) data generated from the same populations of Atlantic cod (Gadus morhua). First, we show that with a "batch-effect-naive" bioinformatic pipeline, batch effects systematically biased our genetic diversity estimates, population structure inference and selection scans. We then demonstrate that these batch effects resulted from multiple technical differences between our data sets, including the sequencing chemistry (four-channel vs. two-channel), sequencing run, read type (single-end vs. paired-end), read length (125 vs. 150 bp), DNA degradation level (degraded vs. well preserved) and sequencing depth (0.8× vs. 0.3× on average). Lastly, we illustrate that a set of simple bioinformatic strategies (such as different read trimming and single nucleotide polymorphism filtering) can be used to detect batch effects in our data and substantially mitigate their impact. We conclude that combining data sets remains a powerful approach as long as batch effects are explicitly accounted for. We focus on lcWGS data in this paper, which may be particularly vulnerable to certain causes of batch effects, but many of our conclusions also apply to other sequencing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助追雨的风采纳,获得10
1秒前
小达完成签到,获得积分10
1秒前
在水一方应助曼陀山庄采纳,获得10
2秒前
3秒前
5秒前
科研通AI5应助小达采纳,获得10
5秒前
eternal完成签到,获得积分10
7秒前
Summer完成签到,获得积分10
8秒前
乌禅发布了新的文献求助10
9秒前
小二郎应助YY采纳,获得10
9秒前
忧郁荔枝完成签到 ,获得积分10
9秒前
9527发布了新的文献求助10
10秒前
Micheallee发布了新的文献求助10
11秒前
在水一方应助innate采纳,获得10
12秒前
ZJJ静完成签到,获得积分10
13秒前
南亭完成签到,获得积分10
13秒前
14秒前
15秒前
汉堡包应助幸福糖豆采纳,获得10
16秒前
wanjingwan完成签到 ,获得积分10
16秒前
冷酷沛柔完成签到,获得积分10
16秒前
Gleaming完成签到,获得积分10
17秒前
18秒前
18秒前
在水一方应助清风明月采纳,获得30
18秒前
傲娇芷蝶完成签到 ,获得积分10
18秒前
JOKY完成签到 ,获得积分10
20秒前
tramp应助zzz采纳,获得10
21秒前
秋刀鱼不过期完成签到 ,获得积分10
22秒前
YY发布了新的文献求助10
22秒前
JamesPei应助ZY采纳,获得10
24秒前
25秒前
万能图书馆应助Micheallee采纳,获得10
25秒前
popcorn完成签到,获得积分10
26秒前
29秒前
林非鹿发布了新的文献求助10
29秒前
30秒前
苏鹏辰完成签到,获得积分10
32秒前
Kirito应助小绵羊采纳,获得10
32秒前
罐罐儿应助小绵羊采纳,获得10
33秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440