The Role of Machine Learning in Cardiovascular Pathology

医学 诱导多能干细胞 人工智能 医学诊断 机器学习 质量(理念) 病理 临床实习 生物信息学 计算机科学 数据科学 医学物理学 哲学 认识论 胚胎干细胞 基因 化学 家庭医学 生物 生物化学
作者
Carolyn Glass,Kyle Lafata,William R. Jeck,Roarke Horstmeyer,Colin Cooke,Jeffrey I. Everitt,Matthew Glass,David Dov,Michael A. Seidman
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:38 (2): 234-245 被引量:16
标识
DOI:10.1016/j.cjca.2021.11.008
摘要

Machine learning has seen slow but steady uptake in diagnostic pathology over the past decade to assess digital whole slide images. Machine learning tools have incredible potential to standardize, and likely even improve, histopathologic diagnoses, but they are not yet widely used in clinical practice. We describe here the principles of these tools and technologies and some successful pre-clinical and pre-translational efforts in cardiovascular pathology, as well as a roadmap for moving forward. In animal models, one proof-of-principle application is in rodent progressive cardiomyopathy, of particular significance to drug toxicity studies. Basic science successes include screening the quality of differentiated stem cells and characterizing cardiomyocyte developmental stages, with potential applications for research and toxicology/drug safety screening using derived or native human pluripotent stem cells differentiated into cardiomyocytes. Translational studies of particular note include those with success in diagnosing the various forms of heart allograft rejection. In fully realizing the value of these tools in clinical cardiovascular pathology, we have identified three essential challenges. First is image quality standardization to ensure that algorithms can be developed and implemented on robust, consistent data. The second is consensus diagnosis; experts don't always agree, and thus truth may be difficult to establish, but the algorithms themselves may provide a solution. The third is the need for large enough data sets to facilitate robust algorithm development, necessitating large, cross-institutional, shared image databases. The power of histopathology-based machine learning technologies is tremendous; we outline here the next steps needed to capitalize on this power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZ发布了新的文献求助10
1秒前
LXH关闭了LXH文献求助
1秒前
1秒前
2秒前
ylf完成签到,获得积分10
2秒前
C_yn发布了新的文献求助10
2秒前
科研通AI2S应助LamChem采纳,获得10
3秒前
李爱国应助ddli采纳,获得10
4秒前
彭于晏应助ddli采纳,获得10
4秒前
隐形曼青应助ddli采纳,获得10
4秒前
共享精神应助ddli采纳,获得10
4秒前
chensiyao发布了新的文献求助10
4秒前
李双艳完成签到,获得积分10
4秒前
4秒前
chenm0333042发布了新的文献求助10
5秒前
皮老师发布了新的文献求助20
5秒前
zz发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
曾经寄真完成签到,获得积分10
7秒前
8秒前
自然浩阑发布了新的文献求助30
8秒前
screct完成签到,获得积分10
8秒前
无聊的火龙果应助Kikua采纳,获得25
8秒前
wanci应助煜琪采纳,获得10
10秒前
11秒前
KristenStewart完成签到,获得积分10
11秒前
jaywzz发布了新的文献求助10
11秒前
Arbor发布了新的文献求助10
11秒前
lee发布了新的文献求助10
11秒前
SciGPT应助小魏采纳,获得10
11秒前
梦Weimar完成签到,获得积分10
11秒前
Akim应助背后的松鼠鼠采纳,获得10
12秒前
916应助zz采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
fule发布了新的文献求助10
13秒前
Borwn发布了新的文献求助30
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951401
求助须知:如何正确求助?哪些是违规求助? 3496844
关于积分的说明 11084706
捐赠科研通 3227245
什么是DOI,文献DOI怎么找? 1784364
邀请新用户注册赠送积分活动 868370
科研通“疑难数据库(出版商)”最低求助积分说明 801110