已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using an artificial neural network to predict the residual stress induced by laser shock processing

算法 人工智能 材料科学 计算机科学
作者
Jiajun Wu,Xuejun Liu,Hongchao Qiao,Yongjie Zhao,Xianliang Hu,Yuqi Yang,Jibin Zhao
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:60 (11): 3114-3114 被引量:13
标识
DOI:10.1364/ao.421431
摘要

With the purpose of using the artificial neural network (ANN) method to predict the residual stresses induced by laser shock processing (LSP), the Ni-Cr-Fe-based precipitation-hardening superalloy GH4169 was selected as the experimental material in this work, and the experimental samples were treated by LSP with laser power densities of 4.24 G W / c m 2 , 7.07 G W / c m 2 , and 9.90 G W / c m 2 and overlap rates of 10%, 30%, and 50%. The depth-wise residual stresses of experimental samples prior to and after LSP were taken according to the x-ray diffraction sin 2 ψ method and electrolytic-polished layer by layer. The ANN model for residual stress prediction was established, and the laser power density, overlap rate, and depth were set as input parameters, while residual stress was set as the output parameter. The residual stresses of untreated samples and those treated with laser power densities of 4.24 G W / c m 2 and 9.90 G W / c m 2 were selected as the training sets, and the data of experimental samples treated with a laser power density of 7.07 G W / c m 2 were reserved as testing sets for validating the trained network. After LSP, beneficial stable compressive residual stresses were introduced in the material’s near surface, and the overall maximum compressive residual stresses were formed on the top surface (surface residual stress). Depending on the LSP process parameters, the surface residual stresses ranged from 236 M P a to 799 M P a , and the compressive residual stress depths of all treated samples were over 0.50 mm. According to the results obtained by ANN, the coefficient of determination R 2 of the training sets is 0.9948, which shows a good fitness for the training network. The R 2 of the testing sets is 0.9931, which is less than that of the training sets but still shows high accuracy. This work proves that the ANN method can be applied to predict the residual stress of metallic materials by LSP treatment with high accuracy and provides a guiding value for the optimization of the LSP process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdy完成签到,获得积分10
1秒前
Khan完成签到,获得积分10
1秒前
跳跃的大楚完成签到,获得积分20
1秒前
2秒前
牛马完成签到 ,获得积分10
2秒前
江沅发布了新的文献求助20
2秒前
kai chen完成签到 ,获得积分0
3秒前
林利芳完成签到 ,获得积分0
5秒前
烟花应助wyby采纳,获得10
5秒前
小蘑菇应助cdy采纳,获得10
6秒前
6秒前
gwh完成签到 ,获得积分10
7秒前
碧蓝皮卡丘完成签到,获得积分10
8秒前
繁笙完成签到 ,获得积分10
9秒前
西洛他唑完成签到 ,获得积分10
9秒前
弈天完成签到 ,获得积分10
10秒前
南北完成签到,获得积分10
11秒前
Youngen完成签到,获得积分10
11秒前
能干的雨完成签到 ,获得积分10
11秒前
12秒前
不安的听寒完成签到 ,获得积分10
13秒前
一卷钢丝球完成签到 ,获得积分10
13秒前
朴素剑心完成签到,获得积分10
13秒前
wanci应助BioRick采纳,获得10
16秒前
wyby完成签到,获得积分10
16秒前
16秒前
兜里全是糖完成签到,获得积分10
17秒前
Aman完成签到,获得积分10
18秒前
酷波er应助Bamboo采纳,获得10
18秒前
Omni完成签到,获得积分10
18秒前
wyby发布了新的文献求助10
18秒前
19秒前
mauve完成签到 ,获得积分10
19秒前
碧蓝香芦完成签到 ,获得积分10
20秒前
XL神放完成签到 ,获得积分10
21秒前
gomoss完成签到,获得积分10
22秒前
这次会赢吗完成签到,获得积分10
22秒前
xiao完成签到 ,获得积分10
23秒前
Sherlock完成签到,获得积分10
23秒前
Lucas应助自信河马采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248680
求助须知:如何正确求助?哪些是违规求助? 3781850
关于积分的说明 11873062
捐赠科研通 3434435
什么是DOI,文献DOI怎么找? 1884912
邀请新用户注册赠送积分活动 936500
科研通“疑难数据库(出版商)”最低求助积分说明 842423