Abstract 12112: Near Infrared Spectroscopic Characterization of Cardiac and Renal Fibrosis

医学 纤维化 心脏纤维化 病理 内科学 心脏病学
作者
John A. Adegoke,Callum Gassner,Isaac O. Afara,Varun Sharma,Sheila K. Patel,Kamila Kochan,Louise M. Burrell,Jai Raman,Bayden R. Wood
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:144 (Suppl_1)
标识
DOI:10.1161/circ.144.suppl_1.12112
摘要

Introduction: Fibrosis is significantly associated with nearly all forms of heart and kidney disease. Clinical diagnosis of fibrosis is currently reliant on conventional methods that do not have the sensitivity and specificity required for effective diagnosis. Hypothesis: An handheld portable near-infrared (NIR) spectrometer, usable intraoperatively coupled to machine learning algorithms can discriminate between fibrotic and healthy cardiac and renal tissue. We sought to validate this in an animal model. Methods: 10 Male Sprague Dawley rats (SDR) with either induced cardiac (SDR-H) and renal (SDR-K) fibrosis (n=5) compare to normal controls (n=5). Hearts from all rats were used as tissue screening in model validation as they contain a high amount of collagen. Multiple tissue samples were harvested from SDR-K ( n fibrosis = 12, n control = 4) and SDR-H ( n fibrosis = 12, n control = 4) groups. NIR spectra (1350 - 2500 nm) were acquired from all tissue sections. Results: Stained sections showed insignificant differences between the fibrotic SDR-H and their corresponding controls as collagen fibrils dominated both groups. SDR-K showed distinguishable features between examined groups. NIR absorption at 1509, 1725, 2055, and 2306 nm were found to be highly indicative of fibrosis (Figure1). PCA (57% explained variance) and PLS-DA (sensitivity: 96%) showed excellent discrimination for SDR-K groups while the heart shows no meaningful discrimination for SDR-H groups. SVM and LR analysis corroborated these results by achieving a 98% classification accuracy for SDR-K and no discrimination for SDR-H. All machine learning models were cross-validated with outcomes of histological staining to establish a robust interpretation and underpin their pathological meanings. Conclusions: NIR accurately diagnoses cardiac and renal fibrosis in rats model. There is potential for this technology to be translated into an intraoperative instrument for tissue diagnosis

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助General采纳,获得30
3秒前
Ruyii完成签到,获得积分10
4秒前
杨好圆完成签到,获得积分10
4秒前
微生完成签到 ,获得积分10
5秒前
充电宝应助Alex采纳,获得10
6秒前
量子星尘发布了新的文献求助10
9秒前
lili完成签到,获得积分10
9秒前
zhangkx23完成签到,获得积分10
11秒前
方强完成签到 ,获得积分10
11秒前
zhu完成签到,获得积分10
14秒前
能干的荆完成签到 ,获得积分10
15秒前
淡淡书白完成签到,获得积分10
16秒前
今后应助风中的丝袜采纳,获得10
18秒前
充电宝应助井莹采纳,获得10
19秒前
彩色的芝麻完成签到 ,获得积分10
20秒前
文艺凉面完成签到 ,获得积分10
21秒前
冰魂应助玛卡巴卡采纳,获得10
22秒前
冰魂应助玛卡巴卡采纳,获得10
22秒前
只影有你应助玛卡巴卡采纳,获得10
23秒前
完美世界应助玛卡巴卡采纳,获得10
23秒前
冰魂应助玛卡巴卡采纳,获得10
23秒前
冰魂应助玛卡巴卡采纳,获得10
23秒前
冰魂应助玛卡巴卡采纳,获得10
23秒前
冰魂应助玛卡巴卡采纳,获得10
23秒前
23秒前
heavenhorse应助玛卡巴卡采纳,获得30
23秒前
哇哈哈哈哈哈完成签到,获得积分10
29秒前
柳觅夏完成签到,获得积分10
30秒前
33秒前
量子星尘发布了新的文献求助10
34秒前
阿桂发布了新的文献求助10
34秒前
SciGPT应助涵泽采纳,获得10
36秒前
zjz完成签到,获得积分10
36秒前
我只是个丙酮酸完成签到,获得积分10
37秒前
37秒前
40秒前
40秒前
井莹发布了新的文献求助10
42秒前
43秒前
anhao发布了新的文献求助10
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864066
求助须知:如何正确求助?哪些是违规求助? 3406352
关于积分的说明 10649409
捐赠科研通 3130311
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990