已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Arrival-time picking of microseismic events based on MSNet

微震 计算机科学 工作流程 超参数 实时计算 卷积神经网络 领域(数学) 噪音(视频) 数据挖掘 人工智能 地质学 地震学 数学 数据库 纯数学 图像(数学)
作者
Guanqun Sheng,Shuangyu Yang,Xingong Tang,Xiaolong Guo
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (2): KS57-KS71 被引量:14
标识
DOI:10.1190/geo2020-0469.1
摘要

Arrival-time picking of microseismic events is a critical procedure in microseismic data processing. However, because field monitoring data contain many microseismic events with low signal-to-noise ratios (S/Ns), traditional arrival-time picking methods based on the instantaneous characteristics of seismic signals cannot meet the picking accuracy and efficiency requirements of microseismic monitoring owing to the large volume of monitoring data. Conversely, methods based on deep neural networks can significantly improve arrival-time picking accuracy and efficiency in low-S/N environments. Therefore, we have adopted a deep convolutional network that combines the U-Net and DenseNet approaches to pick arrival times automatically. This novel network called MSNet not only retains the spatial information of any input signal or profile based on the U-Net, but also extracts and integrates more essential features of events and nonevents through dense blocks, thereby further improving the picking accuracy and efficiency. An effective workflow is developed to verify the superiority of our method. First, we describe the structure of MSNet and the workflow of our picking method. Then, data sets are constructed using variable microseismic traces from field microseismic monitoring records and from the finite-difference forward modeling of microseismic data to train the network. Subsequently, hyperparameter tuning is conducted to optimize the MSNet. Finally, we test the MSNet using modeled signals with different S/Ns and field microseismic data from different monitoring areas. By comparing the picking results of our method with the results of U-Net and short-term average and long-term average methods, the effectiveness of our method is verified. The arrival-picking results of synthetic data and microseismic field data indicate that our network has increased adaptability and can achieve high accuracy for picking the arrival time of microseismic events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
martin完成签到,获得积分10
1秒前
脆筒发布了新的文献求助10
2秒前
2秒前
3秒前
完美世界应助高贵不斜采纳,获得10
3秒前
思源应助dali采纳,获得10
5秒前
古月发布了新的文献求助10
5秒前
5秒前
aventurine发布了新的文献求助10
6秒前
万能图书馆应助脆筒采纳,获得10
6秒前
浮游应助Abner采纳,获得10
7秒前
小张发布了新的文献求助10
7秒前
啊沛啊完成签到,获得积分10
8秒前
8秒前
诚心如意发布了新的文献求助10
9秒前
10秒前
10秒前
MJ发布了新的文献求助10
12秒前
13秒前
星辰大海应助古月采纳,获得10
14秒前
小雨发布了新的文献求助10
16秒前
艾席文发布了新的文献求助10
16秒前
17秒前
香蕉觅云应助青山语采纳,获得10
17秒前
rubyyoyo发布了新的文献求助10
17秒前
Criminology34举报mochou求助涉嫌违规
20秒前
20秒前
maguodrgon发布了新的文献求助10
21秒前
mountainbike完成签到,获得积分10
22秒前
爆米花应助rubyyoyo采纳,获得10
23秒前
自然天亦发布了新的文献求助200
23秒前
科目三应助机灵凌雪采纳,获得10
26秒前
27秒前
NexusExplorer应助舒服的鱼采纳,获得20
27秒前
27秒前
科研通AI6应助笔墨留香采纳,获得10
27秒前
28秒前
科研通AI6应助huanhuangogogo采纳,获得10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443372
求助须知:如何正确求助?哪些是违规求助? 4553292
关于积分的说明 14241453
捐赠科研通 4474854
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418745