Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy

表面等离子共振 纳米结构 局域表面等离子体子 表面等离子体子 拉曼散射 表面增强拉曼光谱 纳米颗粒 纳米棒 可见光谱 胶体金
作者
Kexun Chen,Hui Wang
出处
期刊:Molecular Systems Design and Engineering [Royal Society of Chemistry]
卷期号:6 (4): 250-280 被引量:6
标识
DOI:10.1039/d1me00016k
摘要

Optically excited plasmonic nanostructures exhibit unique capabilities to catalyze interfacial chemical transformations of molecules adsorbed on their surfaces in a regioselective manner through anomalous reaction pathways that are inaccessible under thermal conditions. The mechanistic complexity of plasmon-driven photocatalysis is intimately tied to a series of photophysical and photochemical processes associated with the radiative and non-radiative decay of localized plasmon resonances in metallic nanostructures. Plasmon-enhanced Raman spectroscopy combines ultrahigh detection sensitivity with unique time-resolving and molecular finger-printing capabilities, ideal for detailed kinetic and mechanistic studies of photocatalytic interfacial transformations of molecular adsorbates residing in the plasmonic hot spots. Through systematic case studies of several representative reactions, we demonstrate how plasmon-enhanced Raman spectroscopy can be judiciously utilized as a unique in situ spectroscopic tool to fine-resolve the detailed molecule-transforming processes on the surfaces of optically excited plasmonic nanostructures in real time during the photocatalytic reactions. We further epitomize the mechanistic insights gained from in situ plasmon-enhanced Raman spectroscopic measurements into several central materials design principles that can be employed to guide the rational optimization of the photocatalyst structures and the nanostructure-molecule interfaces for plasmon-mediated surface chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李某某完成签到,获得积分10
1秒前
科研执修完成签到,获得积分10
1秒前
Active完成签到,获得积分10
1秒前
一直不下载文献关注了科研通微信公众号
2秒前
yoozii发布了新的文献求助10
2秒前
x跳完成签到,获得积分10
2秒前
3秒前
3秒前
夕荀完成签到,获得积分10
4秒前
5秒前
5秒前
LINGY完成签到,获得积分10
5秒前
陈昭琼发布了新的文献求助10
6秒前
许欣瑞发布了新的文献求助10
7秒前
北北发布了新的文献求助10
8秒前
乔垣结衣完成签到,获得积分10
8秒前
Pauline完成签到 ,获得积分10
9秒前
羽言完成签到,获得积分10
9秒前
liuqi完成签到 ,获得积分10
9秒前
9秒前
祯果粒完成签到,获得积分10
9秒前
10秒前
寂寞的菠萝应助SN采纳,获得10
10秒前
11秒前
NexusExplorer应助Sw1ft采纳,获得10
12秒前
小马哥完成签到,获得积分10
12秒前
谦让的博完成签到,获得积分10
12秒前
12秒前
12秒前
苻醉山完成签到 ,获得积分10
13秒前
GodMG完成签到,获得积分10
13秒前
胡雅琴完成签到,获得积分10
14秒前
机密塔发布了新的文献求助10
15秒前
南苑完成签到 ,获得积分10
15秒前
丘比特应助开胃咖喱采纳,获得10
15秒前
zixiao发布了新的文献求助30
15秒前
北北完成签到,获得积分10
15秒前
蜡笔小新完成签到,获得积分10
16秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617