Development of Novel Diol-Functionalized Silica Particles toward Fast and Efficient Boron Removal

吸附 弗伦德利希方程 吸附 化学工程 朗缪尔 朗缪尔吸附模型 动力学 色谱法 化学 材料科学 离子交换 有机化学 离子 物理 量子力学 工程类
作者
Yu Tang,Tai‐Shung Chung,Martin Weber,Christian Maletzko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:56 (40): 11618-11627 被引量:26
标识
DOI:10.1021/acs.iecr.7b03115
摘要

Ion-exchange adsorption may be a promising way to tackle the boron contamination in various waterbodies on condition that an effective boron-specific adsorbent with fast sorption kinetics, high efficiency and capacity, easy regeneration, and low cost is accessible. In this work, a group of novel silica-based adsorbents were synthesized for boron removal, with the objectives of assessing their adsorption behaviors and improving their boron separation performance. The adsorption efficiency was systematically evaluated and optimized under various synthesis and operating conditions, i.e., reactant ratio, chelating temperature, particle loading, contact time, and ion strength. In addition, the adsorption kinetics and isotherm were adequately demonstrated. The adsorption kinetics followed the pseudo-second order kinetic model while the adsorption isotherm was described by Langmuir, Freundlich, and Sips models. The silica adsorbent exhibited a high adsorption rate; equilibrium was reached in few minutes, due to its high hydrophilicity and nontortuous structure. A high adsorption capacity was predicted, and a heterogeneous sorption behavior was validated by the isotherm models. Finally, regeneration performance of the adsorbent in both batch experiments and liquid chromatographic (LC) column-based experiments demonstrated that the adsorption capacity was marginally sacrificed (less than 10%) after three cycles of measurements, illustrating promising reusability. These findings may open up new ways to design high-performance boron-specific adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助小a采纳,获得10
1秒前
3秒前
xjfsky完成签到,获得积分10
4秒前
领导范儿应助张家源采纳,获得10
4秒前
4秒前
4秒前
hmhu发布了新的文献求助10
5秒前
JW完成签到,获得积分20
6秒前
7秒前
Harb发布了新的文献求助10
8秒前
8秒前
xr发布了新的文献求助10
8秒前
Sunny发布了新的文献求助10
10秒前
叶落知秋发布了新的文献求助10
10秒前
li发布了新的文献求助10
10秒前
sushx完成签到,获得积分10
10秒前
流年完成签到,获得积分10
11秒前
11秒前
12秒前
小王完成签到,获得积分10
14秒前
希望天下0贩的0应助zz0429采纳,获得10
14秒前
扬帆远航发布了新的文献求助10
15秒前
16秒前
流年发布了新的文献求助10
17秒前
19秒前
张家源发布了新的文献求助10
19秒前
难过龙猫完成签到,获得积分10
20秒前
Orange应助dai采纳,获得10
21秒前
Biu忒佛完成签到,获得积分10
22秒前
24秒前
彭于晏应助xr采纳,获得10
24秒前
科研通AI5应助li采纳,获得10
25秒前
Ruuo616发布了新的文献求助10
26秒前
善学以致用应助赵悦采纳,获得10
26秒前
小a发布了新的文献求助10
28秒前
尊敬秋双完成签到 ,获得积分10
30秒前
小李找文献完成签到,获得积分10
31秒前
32秒前
37秒前
Ruiruirui发布了新的文献求助10
37秒前
高分求助中
Critical Sports Studies: A Document Reader 600
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827037
求助须知:如何正确求助?哪些是违规求助? 3369276
关于积分的说明 10455331
捐赠科研通 3088912
什么是DOI,文献DOI怎么找? 1699541
邀请新用户注册赠送积分活动 817369
科研通“疑难数据库(出版商)”最低求助积分说明 770208