针铁矿
电子转移
化学
材料科学
环境科学
物理化学
光化学
环境化学
吸附
作者
Luiza Notini,Drew E. Latta,Anke Neumann,Carolyn I. Pearce,Michel Sassi,Alpha T. N’Diaye,Kevin M. Rosso,Michelle M. Scherer
标识
DOI:10.1021/acs.est.7b05772
摘要
Despite substantial experimental evidence for Fe(II)–Fe(III) oxide electron transfer, computational chemistry calculations suggest that oxidation of sorbed Fe(II) by goethite is kinetically inhibited on structurally perfect surfaces. We used a combination of 57Fe Mössbauer spectroscopy, synchrotron X-ray absorption and magnetic circular dichroism (XAS/XMCD) spectroscopies to investigate whether Fe(II)–goethite electron transfer is influenced by defects. Specifically, Fe L-edge and O K-edge XAS indicates that the outermost few Angstroms of goethite synthesized by low temperature Fe(III) hydrolysis is iron deficient relative to oxygen, suggesting the presence of defects from Fe vacancies. This nonstoichiometric goethite undergoes facile Fe(II)–Fe(III) oxide electron transfer, depositing additional goethite consistent with experimental precedent. Hydrothermal treatment of this goethite, however, appears to remove defects, decrease the amount of Fe(II) oxidation, and change the composition of the oxidation product. When hydrothermally treated goethite was ground, surface defect characteristics as well as the extent of electron transfer were largely restored. Our findings suggest that surface defects play a commanding role in Fe(II)–goethite redox interaction, as predicted by computational chemistry. Moreover, it suggests that, in the environment, the extent of this interaction will vary depending on diagenetic history, local redox conditions, as well as being subject to regeneration via seasonal fluctuations.
科研通智能强力驱动
Strongly Powered by AbleSci AI