计算机科学
核回归
带宽(计算)
核(代数)
非参数回归
平滑的
利用
非参数统计
算法
核更平滑
核方法
并行计算
回归分析
机器学习
统计
数学
径向基函数核
计算机安全
计算机视觉
组合数学
计算机网络
支持向量机
作者
Chris Rohlfs,Mohamed Zahran
标识
DOI:10.1109/ipdpsw.2017.130
摘要
This study presents a new algorithm and corresponding statistical package for estimating optimal bandwidth for a nonparametric kernel regression. Kernel regression is widely used in Economics, Statistics, and other fields. The formula for the optimal "bandwidth," or smoothing parameter, is well-known. In practice, however, the computational demands of estimating the optimal bandwidth have historically been prohibitively high. Consequently, researchers typically select bandwidths for kernel regressions using ad hoc rules of thumb. This paper exploits the Single Program Multiple Data (SPMD) parallelism inherent in optimal bandwidth calculation to develop a method for computing optimal bandwidth on a GPU. Using randomly generated datasets of different sizes, this approach is shown to reduce the run time by as much as a factor of seven.
科研通智能强力驱动
Strongly Powered by AbleSci AI