已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electrode–Electrolyte Interfaces in Lithium–Sulfur Batteries with Liquid or Inorganic Solid Electrolytes

电解质 锂(药物) 快离子导体 材料科学 硫黄 化学 电极 无机化学 冶金 医学 内分泌学 物理化学
作者
Xingwen Yu,Arumugam Manthiram
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (11): 2653-2660 被引量:173
标识
DOI:10.1021/acs.accounts.7b00460
摘要

Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li+-ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO3. The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li+-ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li+-ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li+-ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
W~舞完成签到,获得积分10
4秒前
Zyl完成签到 ,获得积分10
4秒前
牛先生生完成签到,获得积分10
4秒前
斯文败类应助隐形的大有采纳,获得10
7秒前
Ralap发布了新的文献求助30
7秒前
cool发布了新的文献求助10
8秒前
SciGPT应助小小采纳,获得10
10秒前
10秒前
Fxhy完成签到,获得积分10
11秒前
宇宇完成签到 ,获得积分10
12秒前
科研通AI5应助cookie采纳,获得10
12秒前
冷酷夏真完成签到 ,获得积分10
15秒前
Jackie发布了新的文献求助10
15秒前
饿哭了塞完成签到 ,获得积分10
16秒前
我是老大应助xiang采纳,获得10
16秒前
闫123完成签到,获得积分10
18秒前
CK完成签到 ,获得积分10
21秒前
Jade发布了新的文献求助10
22秒前
chaos完成签到 ,获得积分10
23秒前
秋梓夏枳完成签到 ,获得积分10
24秒前
Hiraeth完成签到 ,获得积分10
25秒前
Breathe完成签到,获得积分10
25秒前
zdyfychenyan完成签到 ,获得积分10
26秒前
27秒前
爱科研的小凡完成签到,获得积分10
28秒前
田様应助英俊的小虾米采纳,获得10
30秒前
博慧完成签到 ,获得积分10
31秒前
XIA完成签到 ,获得积分10
32秒前
Ming完成签到,获得积分10
33秒前
付樽墨儒完成签到,获得积分20
33秒前
激动的55完成签到 ,获得积分10
34秒前
圆圆完成签到 ,获得积分10
36秒前
积极的尔白完成签到 ,获得积分10
37秒前
CC完成签到 ,获得积分10
38秒前
两个我完成签到 ,获得积分10
39秒前
HS完成签到,获得积分10
40秒前
41秒前
leena完成签到 ,获得积分10
43秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4639105
求助须知:如何正确求助?哪些是违规求助? 4032390
关于积分的说明 12475550
捐赠科研通 3719568
什么是DOI,文献DOI怎么找? 2052819
邀请新用户注册赠送积分活动 1084027
科研通“疑难数据库(出版商)”最低求助积分说明 965909