Predicting LiDAR-derived biomass distributions by Weibull models in a subtropical forest

威布尔分布 激光雷达 生物量(生态学) 环境科学 森林资源清查 仰角(弹道) 树(集合论) 遥感 统计 数学 森林经营 地质学 生态学 农林复合经营 生物 几何学 数学分析
作者
Zhengnan Zhang,Lin Cao,Xin Shen,She Guang-hui
标识
DOI:10.1109/eorsa.2018.8598567
摘要

Accurate information on aboveground biomass (AGB) distributions of individual trees is critical to support sustainable forest management, maintain regional carbon cycle and mitigate climate change. Light Detection and Ranging (LiDAR) is a promising active remote sensing technology can provide reliable estimates of forest parameters. Area-based approach (ABA) is appropriate for wall-to-wall estimation of these parameters. In this study, we employed an ABA estimates of AGB by predicting individual tree AGB distributions over a subtropical forest study site. The total plot-level AGB was firstly predicted and the prediction of individual tree AGB distributions was generated by a two-parameter Weibull function. Then the fitted Weibull parameters were further estimated by LiDAR metrics. In addition, all models were assessed by regressed against LiDAR metrics in coniferous forest models. Finally, the stem density for each plot was evaluated by the parameter retrieval method with predicted total AGB and mean tree AGB derived from predicted Weibull parameters of individual tree AGB distribution. The results showed that the AGB and two Weibull parameters were generally predicted well (R 2 =0.79-0.92, rRMSE=8.46%-20.80%). For stem density estimation, the regressed model explained 76% of variability in field stem density. The relationship between predicted and reference AGB distributions when the predicted frequencies of the AGB distributions were scaled to ground-truth stem number (mean Reynolds error index eR=30.83) was relatively stronger than when predicted frequencies were scaled to stem number predicted from LiDAR data (mean eR=33.67). This study demonstrated the distributions of individual forest structural parameters can potentially contribute to enrich ABA forest attributes inventory for airborne LiDAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助nnnn采纳,获得10
1秒前
2秒前
cdercder应助耳机单蹦采纳,获得10
4秒前
ydk完成签到,获得积分10
5秒前
lucy完成签到,获得积分10
5秒前
7秒前
西西发布了新的文献求助10
7秒前
ding应助jcae123采纳,获得10
8秒前
机器狗完成签到,获得积分20
9秒前
华仔应助小夏咕噜采纳,获得10
10秒前
科研通AI5应助Ven23采纳,获得10
10秒前
耳机单蹦完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
14秒前
15秒前
泥泥发布了新的文献求助10
15秒前
张舒涵完成签到,获得积分10
16秒前
秀丽的小懒虫完成签到,获得积分10
16秒前
lemonyu完成签到 ,获得积分10
17秒前
Wsq完成签到,获得积分10
18秒前
bluee发布了新的文献求助10
18秒前
vae发布了新的文献求助10
19秒前
岳大大完成签到,获得积分10
20秒前
qi发布了新的文献求助10
20秒前
jcae123发布了新的文献求助10
20秒前
微风完成签到,获得积分10
21秒前
老北京发布了新的文献求助10
21秒前
老北京发布了新的文献求助10
21秒前
老北京发布了新的文献求助10
22秒前
22秒前
Dromaeotroodon完成签到,获得积分10
23秒前
23秒前
xuuuuumin完成签到 ,获得积分10
24秒前
集力申完成签到,获得积分10
25秒前
柚子发布了新的文献求助10
27秒前
bluee完成签到,获得积分10
32秒前
man完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522