Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons

化学 法拉第效率 掺杂剂 电合成 电化学 催化作用 碳纤维 产品分销 化学工程 价(化学) 兴奋剂 无机化学 纳米技术 电极 有机化学 材料科学 光电子学 物理化学 复合材料 工程类 复合数
作者
Yansong Zhou,Fanglin Che,Min Liu,Chengqin Zou,Zhiqin Liang,Phil De Luna,Haifeng Yuan,Jun Li,Zhi-Qiang Wang,Haipeng Xie,Hongmei Li,Peining Chen,Eva Bladt,Rafael Quintero‐Bermudez,Tsun‐Kong Sham,Sara Bals,Johan Hofkens,David Sinton,Gang Chen,Edward H. Sargent
出处
期刊:Nature Chemistry [Nature Portfolio]
卷期号:10 (9): 974-980 被引量:965
标识
DOI:10.1038/s41557-018-0092-x
摘要

The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C2 products. Here, we use boron to tune the ratio of Cuδ+ to Cu0 active sites and improve both stability and C2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C2 products. We report experimentally a C2 Faradaic efficiency of 79 ± 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of ~40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons. On copper catalysts, Cuδ+ sites play a key role in the electrochemical reduction of CO2 to C2 hydrocarbons, however, they are prone to being reduced (to Cu0) themselves. Now, a Cuδ+-based catalyst is reported that is stable for in excess of ~40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons and that exhibits a Faradaic efficiency for C2 of ~80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
深情安青应助mujin采纳,获得50
3秒前
4秒前
Harssi发布了新的文献求助10
4秒前
研友_LMg3PZ完成签到,获得积分10
4秒前
5秒前
吕耀炜发布了新的文献求助10
6秒前
Carmen发布了新的文献求助10
6秒前
6秒前
jungwoo123发布了新的文献求助10
6秒前
Lven发布了新的文献求助10
7秒前
shihui发布了新的文献求助10
7秒前
7秒前
8秒前
FashionBoy应助秋天不回来采纳,获得10
8秒前
9秒前
平常月光发布了新的文献求助10
9秒前
10秒前
Ccc发布了新的文献求助30
10秒前
Ari_Kun发布了新的文献求助10
11秒前
细心嚓茶完成签到,获得积分10
11秒前
酷波er应助安静成威采纳,获得10
12秒前
bkagyin应助哈哈采纳,获得10
12秒前
jungwoo123完成签到,获得积分10
14秒前
14秒前
15秒前
Harssi发布了新的文献求助10
15秒前
桐桐应助Wency采纳,获得30
16秒前
18秒前
zz完成签到,获得积分10
18秒前
11122发布了新的文献求助10
18秒前
吕耀炜完成签到,获得积分10
20秒前
20秒前
22秒前
mujin发布了新的文献求助50
23秒前
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241