光热治疗
材料科学
纳米技术
太阳能燃料
光热效应
催化作用
太阳能
能量转换
太阳能转换
合理设计
氢燃料
热的
联轴节(管道)
电子转移
制氢
能量转换效率
表面工程
氢
过程(计算)
领域(数学)
能量转移
纳米结构
热稳定性
光伏
碳纤维
光伏系统
碳纳米管
热分解
机制(生物学)
作者
Hongbin He,Yukun Ren,Tianxu Zeng,Hongyang Zhang,Yuan‐Hao Zhu,Xianglei Liu,Jiancheng Zhou,Lunbo Duan,Yitao Si,Maochang Liu,Dengwei Jing,Naixu Li
标识
DOI:10.1002/adma.202523060
摘要
ABSTRACT Nanoconfined photothermal catalysis enables tackling energy transition and carbon neutrality by constructing precise micro/nanoconfined spaces to boost photothermal efficiency and reaction selectivity. This review systematically examines the technology's core mechanisms, advanced material design strategies, and cutting‐edge applications in solar fuel synthesis. We first elucidate how unique spatiotemporal field effects within confined microenvironments significantly improve photothermal efficiency and product selectivity, centered on efficient photothermal conversion, precise control of mass transfer‐adsorption, optimized reaction pathways, and synergistic coupling of photo‐thermal‐mass multi‐field interactions. Second, we detail key engineering strategies for high‐performance catalysis: precise construction of confinement architectures, rational integration of efficient photothermal components, atomic‐scale engineering of catalytic sites, and multifunctional interface optimization. The technology demonstrates transformative potential in light‐driven hydrogen production, high‐value CO 2 conversion, CH 4 dry/wet reforming, and directional transformation of light alkanes. However, critical challenges persist: unclear multi‐physical‐field coupling mechanisms; insufficient precision in sub‐nanomaterial synthesis and long‐term stability; thermal management‐mass transfer mismatches; reaction kinetics‐mass transfer trade‐offs; difficulty controlling complex reaction networks; and absent scale‐up pathways. This review clarifies the fundamental nature of confined catalysis to guide the development of novel multifunctional materials, break stability limits, achieve cross‐scale process intensification and system integration, ultimately advancing industrial‐scale, efficient, highly selective solar fuel synthesis technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI