A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating

耐久性 材料科学 涂层 超疏水涂料 光伏系统 发电 纳米技术 透射率 复合材料 工艺工程 功率(物理) 光电子学 工程类 电气工程 量子力学 物理
作者
Yubo Wu,Jianqiang Du,Guangxin Liu,Danzhu Ma,Fengrui Jia,Jiří Jaromír Klemeš,Jin Wang
出处
期刊:Renewable Energy [Elsevier]
卷期号:185: 1034-1061 被引量:105
标识
DOI:10.1016/j.renene.2021.12.123
摘要

Photovoltaic (PV) power has become one of the most important methods of electricity generation using renewable sources to progress towards carbon emissions neutrality. However, the accumulation of dust seriously affects the visible light transmittance of glass, which significantly decreases the power generation efficiency of PV modules. As promising passive cleaning solutions, a superhydrophobic coating can be used to effectively reduce the surface adhesion rate of dust due to special micro-nano structures and low surface energy. The superhydrophobic coating on the glass surface shows great application values for material requirements of high light transmission and mechanical stability. This paper summarises problems of dust and ice accumulation and its cleaning technologies for PV modules, and the basic principle and development of superhydrophobicity are introduced. Preparation methods and design features of rough structures in the past decade are emphatically discussed. The superhydrophobic coating generally has a good light transmission up to 98.7%, which is higher than that of the original glass. However, their application is limited by the shape of their applicable object and by their durability. Most coatings can only be applied to planar modules, and their durability needs to be further improved, with coatings capable of withstanding a maximum of 6H hardness appearing. The preparation methods and their applications of the superhydrophobic coating are summarized and prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fransic发布了新的文献求助10
刚刚
刚刚
菠菜发布了新的文献求助100
1秒前
简单花花完成签到,获得积分10
1秒前
1秒前
1秒前
蒋皓天完成签到,获得积分10
1秒前
xxx发布了新的文献求助10
2秒前
2秒前
斯文败类应助sunyanghu369采纳,获得30
3秒前
4秒前
我是老大应助123654采纳,获得10
5秒前
Ava应助王QQ采纳,获得10
5秒前
djbj2022发布了新的文献求助10
5秒前
结实寄柔完成签到,获得积分10
6秒前
加油吧少年完成签到,获得积分10
6秒前
高高手完成签到,获得积分20
6秒前
今后应助margo采纳,获得10
6秒前
亭树完成签到,获得积分10
6秒前
zhhyi1976完成签到,获得积分10
6秒前
6秒前
英俊的铭应助xxx采纳,获得10
7秒前
十字入口完成签到,获得积分10
7秒前
7秒前
dlw完成签到,获得积分10
8秒前
zzf完成签到 ,获得积分10
8秒前
changaipei完成签到,获得积分10
9秒前
xiaotian完成签到,获得积分10
10秒前
10秒前
10秒前
yulong发布了新的文献求助10
11秒前
小蘑菇应助落寞依玉采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
秋天的童话完成签到,获得积分10
12秒前
13秒前
13秒前
xxx完成签到,获得积分10
14秒前
超负荷完成签到,获得积分10
14秒前
chang完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503