Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:178: 107430-107430 被引量:43
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤布蕾应助zsm101采纳,获得10
刚刚
刚刚
飞盘通完成签到,获得积分10
刚刚
绾绾完成签到,获得积分10
刚刚
YAN关闭了YAN文献求助
1秒前
魔幻的曼寒完成签到,获得积分10
1秒前
1秒前
1秒前
整齐的雨完成签到 ,获得积分10
2秒前
haihuhu完成签到 ,获得积分10
2秒前
ED应助kevinchan2009采纳,获得20
2秒前
liuyaofeng完成签到,获得积分10
3秒前
烂漫夜梅完成签到,获得积分10
3秒前
佳思思完成签到,获得积分10
3秒前
4秒前
guozizi应助幸福大白采纳,获得30
4秒前
JingjingYao完成签到,获得积分10
5秒前
pan发布了新的文献求助10
5秒前
易止完成签到 ,获得积分10
5秒前
5秒前
顾矜应助unknowneil采纳,获得10
6秒前
tt完成签到,获得积分10
6秒前
NexusExplorer应助闪闪如南采纳,获得10
6秒前
西哥完成签到,获得积分10
6秒前
万能图书馆应助Docsiwen采纳,获得10
7秒前
7秒前
所所应助陈敏采纳,获得10
8秒前
暮霭沉沉应助悦耳鲜花采纳,获得10
8秒前
9秒前
希望天下0贩的0应助kkk采纳,获得10
9秒前
9秒前
飞盘通发布了新的文献求助10
9秒前
9秒前
西哥发布了新的文献求助10
10秒前
酷波er应助哈哈哈采纳,获得10
10秒前
传奇3应助舒适的以南采纳,获得10
10秒前
11秒前
我是老大应助wonderingria采纳,获得10
11秒前
辛勤的小鸽子完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230927
求助须知:如何正确求助?哪些是违规求助? 3764489
关于积分的说明 11828594
捐赠科研通 3423517
什么是DOI,文献DOI怎么找? 1878693
邀请新用户注册赠送积分活动 931757
科研通“疑难数据库(出版商)”最低求助积分说明 839316